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Abstract

In Bayesian inference, a common technique to approximately sample
from and compute statistics of high-dimensional posteriors is to use the
Laplace approximation — a Gaussian proxy for the true posterior. The
Laplace approximation accuracy improves as sample size grows, but the
question of how fast dimension d can grow with sample size n has not been
fully resolved. Prior works have shown that d3 � n is a sufficient condition
for accuracy of the approximation. But by deriving the leading order
asymptotics of the TV distance between the two measures, we show that
in fact d2 � n is sufficient, and we show for a logistic regression posterior
that this growth condition is necessary. Furthermore, through another
leading order asymptotic expansion, we derive a computable correction to
the mode, which is the Laplace approximation to the mean. Incorporating
this skew correction improves the mean approximation accuracy by two
orders of magnitude.

1 Introduction

Consider the posterior distribution π of a parameter x ∈ Rd given i.i.d. data
yi, i = 1 . . . , n, a prior ν on x, and a data-generating model p(· | x):

π(x) = π(x | {yi}ni=1) ∝ ν(x)

n∏
i=1

p(yi | x), x ∈ Rd. (1.1)

In modern applications, the dimension d can be very large, so that computing
summary statistics of π — given by high dimensional integrals — is the central
challenge in Bayesian inference. A standard approach in Bayesian inference to
approximate integrals with respect to π is to use the Laplace approximation:
namely, to write π ∝ e−V and replace V by its second order Taylor expansion
around the minimizer m̂ of V , which is the mode of π. This yields the Gaussian
density

γ̂ = N
(
m̂, ∇2V (m̂)−1

)
, m̂ = arg min

x∈Rd
V (x), (1.2)
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and we can now easily evaluate integrals with respect to γ̂. In fact, this approx-
imation automatically gives us an estimate for the mean and covariance of π,
but we can also approximate expectations of other observables f (e.g. indica-
tors of credible sets) as

∫
fdπ ≈

∫
fdγ̂. To understand the rationale behind the

Laplace approximation, note that for π ∝ e−V of the form (1.1), we can write
V (x) = nv(x), where

v(x) = − 1

n
log ν(x)− 1

n

n∑
i=1

log p(yi | x). (1.3)

Therefore, ∫
fdπ =

∫
Rd fe

−nvdx∫
Rd e

−nvdx
, (1.4)

and such integrals can be approximated using Laplace’s method for large n (note
however that v can depend on n, while in the classical theory v remains fixed).
The idea of Laplace’s method is that when n is large, the density π ∝ e−nv(x)

concentrates around x = m̂, the global minimizer of v. But near m̂, the function
v is well-approximated by its second order Taylor expansion. The resulting
density is precisely the Gaussian density γ̂ defined in (1.2).

The central question addressed in this work is the accuracy of the Laplace
approximation in the case when dimension d grows with sample size n. Specif-
ically, how fast can d grow with n such that γ̂ still yields an accurate approxi-
mation to π when n� 1? To address this question, we derive the leading order
asymptotics of the observable expectation error

∫
fdπ −

∫
fdγ̂ for generic f .

We use this expansion to conclude that the TV distance between π and γ̂ is
small provided d2 � n, up to v-dependent constants (which we will discuss at
length). Furthermore, the asymptotic expansion opens the door to correcting
the Laplace approximation, since the leading order term of

∫
fdπ −

∫
fdγ̂ is

explicit and computable. In particular, for f(x) = x this amounts to a com-
putable skew correction to the mode m̂, which improves the approximation of
the mean by two orders of magnitude.

Before describing our contributions in more detail, we explain the “fixed-
sample” and model-agnostic perspective taken in this work.

The Laplace approximation as fixed-sample BvM. Due to the random-
ness of the data {yi}ni=1, the posterior π is itself random. The Bernstein-von
Mises (BvM) theorem considers π in the large n limit under the frequentist as-
sumption that {yi}ni=1 is drawn i.i.d. from the distribution p(· | x0), where x0

is the ground truth parameter. In this case, the BvM theorem states that, with
high probability under the ground truth data-generating process, the posterior,
when centered on an efficient estimator, converges in TV as n → ∞ to a zero
mean Gaussian with covariance matrix given by the inverse of the Fisher infor-
mation at x0.The classic BvM theorem is stated for fixed parameter dimension,
but in the last several decades, BvM results in growing parameter dimension
have been shown. We review these below.
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In practice, the BvM has two drawbacks. First, it does not yield an imple-
mentable Gaussian approximation, since the covariance of the limiting Gaussian
depends on the ground truth. Second, it does not allow us to quantify the dis-
tance between the limiting Gaussian and a given posterior π as a function of
the fixed samples {yi}ni=1. But the Laplace approximation is implementable,
and recent works (discussed below) have obtained error bounds on this approx-
imation which depend explicitly on the function v for which π is defined via
π ≈ e−nv. Note that v incorporates both the log prior and the log-likelihood,
which depends on the given samples {yi}ni=1. For a distance δ between measures
(or an f -divergence), such a bound takes the general form

δ(π, γ̂) ≤ ε(d, n, v). (1.5)

Typically, ε(d, n, v) depends on v through its derivatives in a neighborhood of
the mode m̂. We, too, take this fixed-sample perspective. Our approach is also
model agnostic: we do not require that π has the form of a posterior distribution
at all. Rather, we simply assume π ∝ e−nv for some function v. Note that v is
defined on Rd, and therefore inherently depends on dimension. We also allow
v to depend on n, although our results our most useful in the case when this
dependence is mild, as in (1.3).

Dimension dependence: prior work. A long line of work has established
in various settings that the BvM holds when d = dn satisfies d3

n/n→ 0 as n→
∞, up to logarithmic and model-specific factors. [Ghosal, 1999, Ghosal, 2000]
prove BvMs for posteriors arising from linear regression models and exponen-
tial families, respectively. [Boucheron and Gassiat, 2009] proves a BvM for the
posterior of a discrete probability mass function truncated to its first dn en-
tries. [Spokoiny, 2013, Panov and Spokoiny, 2015] prove BvMs for growing para-
metric, and semiparametric statistical models, respectively. [Lu, 2017] proves
a BvM for nonlinear Bayesian inverse problems. See all of the above works for
further references on BvMs with growing parameter dimension.

We have summarized the above BvM results under the generic condition
d3
n/n → 0 as n → ∞. However, we emphasize that important model-specific

growth conditions must also be satisfied. To give an example, [Lu, 2017] requires
that σ(dn)2 log dn

√
d3
n/n→ 0, where σ(dn)−1 is a lower bound on the smallest

eigenvalue of the gradient of the forward operator. [Boucheron and Gassiat, 2009]
requires that d3

n/(n infi≤dn θ0(i)) → 0, where θ0(i) is the probability of state
i = 1, 2, 3, . . . under the ground truth probability mass function θ0.

More recent “finite-sample” works, which bound the accuracy of the Laplace
approximation (1.2), have conveyed these model specific growth conditions through
the function v (where π ∝ e−nv). Namely, they obtain bounds in terms of a “uni-
versal” factor depending on d and n only, and a “model-specific” factor depend-
ing on v. Specifically, the works [Helin and Kretschmann, 2022, Spokoiny, 2022,
Dehaene, 2019] have obtained error bounds on the Laplace approximation of the
form

TV(π, γ̂) . c3(v)
√
d3/n, KL(π || γ̂) . c3(v)2d3/n.
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Here, c3(v) is a ratio of third and second order derivatives of v, whose definition
varies slightly from paper to paper. We note that the TV and KL bounds due
to [Spokoiny, 2022] are actually in terms of d3

eff/n, where deff ≤ d is an effective
dimension which depends on the strength of regularization by a Gaussian prior.

Remarkably, the above TV bound was recently tightened in [Kasprzak et al., 2022].
Without strengthening the assumptions of the above works, the authors show
that in fact,

TV(π, γ̂) . c3(v)
√
d2/n, (1.6)

where c3(v) is an analogous constant to the above. Interestingly, dimension
dependence was not the stated aim of this work, and the dependence of the
bound on d was not made explicit in the paper. We review this work and the
authors’ proof method in more detail below.

Main Contributions. The result (1.6) by [Kasprzak et al., 2022] tightens the
dimension dependence of previous bounds, showing that d2 � n is sufficient for
Laplace approximation accuracy, up to model-dependent conditions. However,
the question remains: what are the necessary conditions on d, n, and v to ensure
Laplace approximation accuracy? This question can be resolved with an asymp-
totic expansion of the TV error. Early progress toward an asymptotic expansion
in the high dimensional regime was made in [Shun and McCullagh, 1995].

Our first main contribution is to derive the leading order asymp-
totics of the TV error, bringing greater clarity to the question of Laplace
approximation accuracy as a function of v, d, and n.

Theorem 1.1 (Informal). Let V = nv ∈ C4 have a unique strict minimum
m̂. Let π ∝ e−V and γ̂ = N

(
m̂, ∇2V (m̂)−1

)
be its Laplace approximation. If

the third and fourth order derivatives of V grow at most polynomially and V
grows at least polynomially (any power greater than zero) at infinity, then for
an explicit quantity

L = L(∇2V (m̂),∇3V (m̂)),

we have the decomposition TV (π, γ̂) = L + R. The leading order term L and
the remainder R are bounded as

0 ≤ L ≤ c3(v)
d√
n
, |R| ≤ f(c3(v), c4(v))

(
d√
n

)2

.

See Theorem V1 for the formal statement and explicit formulas for L and f ,
and Section 2.1 for the definitions of c3 and c4. In most cases, the upper bound
on R is an order of magnitude smaller than the upper bound on L. Therefore,
the first implication of the theorem is a tighter upper bound on the TV error
thanks to tight control over the explicit term L.

More importantly, however, the term L determines the relationship between
d, n, and v under which the Laplace approximation is accurate. We believe the
upper bound |L| ≤ c3(v)d/

√
n is generically tight. But even in cases where

it is not tight, the term L still serves as the starting point for analysis. For
example, if L ∼ (d/

√
n)2, this implies one should compute the second order
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term in the expansion (which our theory provides in semi-explicit form). If e.g.
L ∼

√
d/
√
n, then this is a useful indication that d/

√
n is not the fundamental

unit of error.
As mentioned above, we prove Theorem 1.1 by deriving the leading order

asymptotics for the observable expectation error
∫
fdπ −

∫
fdγ̂. This allows

one to improve the accuracy of the Laplace approximation to an observable
expectation of interest. Arguably the most important observable is the mean.
Thus, our second main contribution is to derive a skew correction to
the mode to better approximate the mean.

Theorem 1.2 (Informal). Consider the same setting and conditions as in The-
orem 1.1, and additionally suppose V ∈ C5, with ∇5V growing polynomially at
infinity. Let mπ be the first moment of π, and note that m̂ is the first moment
of γ̂. Then for an explicit quantity

L = L(∇2V (m̂),∇3V (m̂)),

we have the decomposition ∇2V (m̂)1/2(mπ − m̂) = L+R, where

‖L‖ ≤ c3(v)

(
d√
n

)
, ‖R‖ ≤ f (c3(v), c4(v), c5(v))

(
d√
n

)3

.

The message of this theorem is that L̂ := ∇2V (m̂)−1/2L is an explicit,
computable skew correction term. Indeed, when π is skewed, the mode m̂ is
likely not to be a good approximation of the mean mπ. But the theorem shows
that estimating mπ by m̂+ L̂ rather than by m̂ decreases the normalized error
by a factor of d2/n. See the below paragraph on computability, as well as
Example 2.1, for a discussion of the cost of computing L̂.

We note that [Kasprzak et al., 2022] also bounds the mean error (without
the correction), obtaining the same order of magnitude, d/

√
n, as do we in

the above theorem. The recent work [Durante et al., 2023] also derives a skew
correction — not just to the mode m̂, but to the Gaussian distribution γ̂ itself.
The resulting distribution, which belongs to the class of generalized skew-normal
distributions, leads to a TV error of order O(1/n), which is a factor of 1/

√
n

better than the TV error for the original Laplace approximation. However,
the TV error bound for the skew-normal approximation scales exponentially in
dimension.

In addition to the above asymptotics of the mean error, we also derive an
upper bound on the covariance error. The leading contribution to this error is
already of order (d/

√
n)2 (compare to the leading mean error, which has order

d/
√
n), so deriving the explicit correction term that would make the covariance

error even smaller seems unnecessary.

A necessary price to pay for the generality of our results is that our bounds
depend on the data and statistical model only indirectly, through the constants
c3(v), c4(v), c5(v). Determining the scaling of these constants with dimension
must be done on a case-by-case basis. We show how this can be done for logistic
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regression, an important model used often in practice. Thus our third main
contribution is to prove high probability upper bounds on the Laplace
approximation error for a logistic regression posterior with Gaussian
design. We show that if d2/n < 1, then the coefficients c3(v), f(c3(v), c4(v)),
f(c3(v), c4(v), c5(v)) arising in the bounds on L and R in Theorems 1.1 and 1.2
are all bounded by an absolute constant with high probability. This leads to
state of the art error bounds on the Laplace approximation for logistic regression,
in terms of d/

√
n alone. We also show numerically that the leading order terms

L in the TV and mean error decompositions are bounded from below by d/
√
n,

showing that in this example, d2/n� 1 is necessary and sufficient for accurate
Laplace approximation.

Furthermore, the logistic regression analysis paves the way to deriving bounds
on the Laplace approximation error for other generalized linear models with
Gaussian design.

Computability and comparison to Gaussian VI. Gaussian variational
inference (VI) offers another Gaussian approximation to posteriors π. It is
defined as

γ̂VI = argmin
p∈PGauss

KL( p || π), (1.7)

where PGauss is the family of nondegenerate Gaussian distributions on Rd. For
a measure π ∝ e−nv on Rd, [Katsevich and Rigollet, 2023] bounds the mean
and covariance error of Gaussian VI in terms of d and n. They found that the
normalized mean approximation error is upper bounded by (d3/n)3/2, which
in its n dependence significantly outperforms the Laplace mean approximation
error. However, Theorem 1.2 shows that if we can compute the skew correction
term L̂, then the estimate m̂ + L̂ is just as accurate as the Gaussian VI mean
error — order (d2/n)3/2. Note that the Laplace and VI covariance error both
have the same n scaling; see Figure 1 in [Katsevich and Rigollet, 2023].

We show in Example 2.1 below that for a generalized linear model, com-
puting the mean correction term L̂ is no more computationally expensive than
computing the Laplace approximation itself, which requires 1) finding the mode
m̂, 2) computing the Hessian ∇2V (m̂), and 3) inverting the Hessian to obtain
the covariance estimate. In fact, fully inverting the Hessian is not even required
to compute L̂; one need only solve the linear systems ∇2V (m̂)ai = xi for ai,
i = 1, . . . , n, where the xi are the predictor variables. In particular, computing
the third derivative tensor ∇3V (m̂) is straightforward for GLMs (and moreover,
in order to evaluate L̂ one need not first compute and store this tensor).

However, for other statistical models — particularly Bayesian inverse prob-
lems — computing the third derivative of V may be prohibitively expensive.
In this case Gaussian VI may be more feasible, since it only requires the first
derivative of V . See [Lambert et al., 2022, Diao et al., 2023] for algorithmic
implementations of Gaussian VI.
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Organization. The rest of the paper is organized as follows. In Section 2,
we state our assumptions and main results on the Laplace approximation. In
Section 3, we specialize these results to logistic regression. In Section 4, we
present the most general version of our asymptotic expansion to arbitrary order.
We outline the proof of the expansion, and show how the theorems in Section 2
follow from it.

Notation. For a measure π on Rd with finite first and second moments, we
let mπ,Σπ be the mean and covariance of π. For a function V with a unique
minimum, we define HV to be the Hessian of V at the minimum. We let γ denote
the density of the standard normal distribution N (0, Id) in d dimensions, and
we write either

∫
fdγ or E [f(Z)] or γ(f) for the expectation of f under γ.

We write Z = (Z1, . . . , Zd) to denote a standard multivariate normal random
variable Z ∼ γ in Rd, and Z1 to denote a standard normal in R. For an
observable f : Rd → R such that

∫
|f |pdγ <∞, we define

‖f‖p =

(∫
|f |pdγ

) 1
p

.

A tensor T of order k is an array T = (Ti1i2...ik)di1,...,ik=1. For two order k tensors
T and S we let 〈T, S〉 be the entrywise inner product. We say T is symmetric
if Ti1...ik = Tj1...jk , for all permutations j1 . . . jk of i1 . . . ik.

Let H be a symmetric positive definite matrix. For a vector x ∈ Rd, we
let ‖x‖H denote ‖x‖H =

√
xTHx. For an order k tensor T , we define the

H-weighted operator norm of T to be

‖T‖H := sup
‖x1‖H=···=‖xk‖H=1

〈T, x1 ⊗ · · · ⊗ xk〉. (1.8)

When H = Id, the norm ‖T‖Id is the regular operator norm, and in this case we
omit the subscript. For a symmetric, order 3 tensor T and a symmetric matrix
A, we let 〈T,A〉 ∈ Rd be the vector with coordinates

〈T,A〉i =

d∑
j,k=1

TijkAjk, i = 1, . . . , d. (1.9)

Note that ‖〈T,A〉‖ = sup‖u‖=1〈T,A⊗ u〉, and if A =
∑d
i=1 λiviv

T
i is the eigen-

decomposition of A then

‖〈T,A〉‖ = sup
‖u‖=1

〈T,A⊗ u〉 ≤
d∑
i=1

|λi| |〈T, vi ⊗ vi ⊗ u〉| ≤ d‖A‖‖T‖. (1.10)

2 Main Result

Let π ∝ e−nv on Rd. In this section, we first state our assumptions on v, n, and
d. We then present our results on 1) the TV distance between π and its Laplace
approximation, 2) the first moment error (with and without skew correction),
and 3) the covariance error.
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2.1 Assumptions on the potential

Here, we state and discuss our assumptions on v, d, and n.

Assumption A1. v ∈ C4, with unique global minimizer x = m̂, and Hv =
∇2v(m̂) � 0.

Assumption A2. There exist c3, c4 > 0 such that the following bounds hold
on the operator norms of third and fourth order derivative tensors, at m̂ and in
a vanishing neighborhood of m̂, respectively:

‖∇3v(m̂)‖Hv ≤ c3,

‖∇4v(m̂+ x)‖Hv ≤ c4, ∀‖x‖Hv ≤ 4
√
d/n.

(2.1)

Assumption A3. For some q > 0 and the same c4 as in Assumption A2,
we have the following global bound on the growth of the fourth derivative of
t 7→ v(m̂+ tu):

|〈∇4v(m̂+ tu), u⊗4〉| ≤ c4 max (1, t)
q
, ∀‖u‖Hv = 1, t ≥ 0. (2.2)

Note that sup‖u‖Hv=1 |〈∇4v(m̂+ tu), u⊗4〉| ≤ sup‖u‖Hv=1 ‖∇4v(m̂+ tu)‖Hv .
Therefore, Assumption A3 is implied by the following, stronger assumption,
which may be easier to interpret: for some q > 0, c̃4 > 0 we have

‖∇4v(m̂+ x)‖Hv ≤

{
c̃4, ‖x‖Hv ≤ 1,

c̃4‖x‖qHv , ‖x‖Hv ≥ 1.
(2.3)

If (2.3) holds, then both the second bound in (2.1) and Assumption A3 hold
with c4 = c̃4. Note that since v ∈ C4, we can always find a finite constant c̃4
such that sup‖x‖Hv≤1 ‖∇4v(m̂+x)‖Hv ≤ c̃4. Therefore, (2.3) simply states that
we can extend this uniform (constant) bound inside the unit ball {‖x‖Hv ≤ 1},
to a polynomial growth bound outside of it. The actual assumption A3 is
analogous but slightly weaker, since we only consider the action of ∇4v(m̂+ tu)
in the direction of u itself. This only makes a difference for t > 0, since at
t = 0 we have sup‖u‖Hv=1〈∇4v(m̂), u⊗4〉 = ‖∇4v(m̂)‖Hv . Thus in particular,

Assumption A3 implies that c4 is no smaller than ‖∇4v(m̂)‖Hv and in fact, no
smaller than sup‖x‖Hv≤

√
d/n
‖∇4v(m̂+ x)‖Hv by Assumption A2.

Assumption A4. For some c0 > 0, α > 0, and 0 < r < 1 satisfying

4c3r + c4r
2 ≤ 6, (2.4)

the following lower bound holds on the growth of v at far-range:

v(m̂+ x)− v(m̂) ≥ c0‖x/r‖αHv , ∀‖x‖Hv ≥ r (2.5)
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Remark 2.1. It will be important for our main results in Section 2.2 that nc0
satisfy some minimal growth condition. To verify this condition, it is convenient
if we can take c0 = inf‖x‖Hv=r [v(m̂+ x)− v(m̂)] in (2.5), meaning that

inf
‖x‖Hv≥r

v(m̂+ x)− v(m̂)

‖x/r‖αHv
= inf
‖x‖Hv=r

v(m̂+ x)− v(m̂) =: c0 (2.6)

The convenience of this c0 is that it is easy to bound from below. Indeed,
Lemma 4.3 below implies that

c0 = inf
‖x‖Hv=r

v(m̂+ x)− v(m̂) ≥ r2/4. (2.7)

The condition (2.6) is slightly stronger than Assumption A4, which only requires
that the lefthand side of (2.6) is bounded below by some c0 > 0. However, if
v is convex, for example, then it is straightforward to show that (2.6) holds for
α = 1 and any r > 0. Therefore, assuming (2.6) holds for some 0 < α < 1 and
some r > 0 is weaker than convexity, though stronger than (2.5).

Our theorem on the first moment approximation error will also require the
following additional assumption.

Assumption A5. v ∈ C5, and there exists a positive constant c5 such that
with the same q from Assumption A3, we have the following bound on the
growth of the fifth derivative of t 7→ v(m̂+ tu):

|〈∇5v(m̂+ tu), u⊗5〉| ≤ c5 max

(
1,

t√
d/n

)q
, ∀‖u‖Hv = 1, t ≥ 0. (2.8)

This assumption on the fifth derivative is analogous to but slightly weaker
than Assumption A3 on the fourth derivative. Here, the transition from uniform
boundedness to polynomial growth occurs at ‖x‖Hv =

√
d/n rather than at

‖x‖Hv = 1 (where x = tu).

Remark 2.2. Note that for all ‖u‖Hv = 1 and t ≥ 0, we have

|〈∇kv(m̂+ tu), u⊗k〉| ≤ ‖∇kv(m̂+ tu)‖Hv ≤
‖∇kv(m̂+ tu)‖
λmin(Hv)k/2

(2.9)

(The lefthand inequality for k = 4 was already discussed following Assump-
tion A3.) Therefore, Assumptions A2, A3, and A5 are implied by the following
three inequalities, respectively:

‖∇3v(m̂)‖
λmin(Hv)3/2

≤ c3,

‖∇4v(m̂+ x)‖
λmin(Hv)2

≤ c4 max (1, ‖x‖Hv )
q
, ∀x ∈ Rd,

‖∇5v(m̂+ x)‖
λmin(Hv)5/2

≤ c5 max

(
1,
∥∥∥x/√d/n∥∥∥

Hv

)q
, ∀x ∈ Rd.

(2.10)
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In some cases, including the logistic regression posterior in Section 3, it is sim-
pler to bound the lefthand quantities in (2.10) then it is to check the original
assumptions.

Discussion. Let us comment on the dependence on d, n of the quantities
c0, c3, c4, c5, q, α, r, for a function v stemming from a posterior distribution, as
in (1.3). Consider the asymptotic regime in which n→∞ and d grows with n.
In this case, we have a sequence of priors ν = νd on Rd, and models p(· | x) =
pd(· | x), x ∈ Rd. Typically, the prior and model do not depend on n explicitly
(only through d). Thus v depends on n only via the scaled-down prior 1

nνd, and
via the average of the n functions p(yi | ·). If the data {yi}ni=1 are distributed
i.i.d. from some distribution Q (e.g. Q = p(· | x0) in the well-specified case with
ground truth x0), then for large n we expect that v(x) ≈ E Y∼Q[− log pd(Y | x)].
This is only heuristic, since d grows with n, but it suggests that the above
quantities depend only mildly on n itself.

On the other hand, these quantities may depend strongly on d. For exam-
ple, recall from Remark 2.2 that c3, c4, c5 can be obtained as upper bounds on
‖∇kv‖λmin(Hv)

−k/2 for k = 3, 4, 5. If λmin(Hv) is going to zero with d, as in
ill-posed inverse problems, then we can expect c3, c4, c5 to grow with dimen-
sion. (Note that the function v in Bayesian inverse problems can be written in
a similar form to (1.3); see [Lu, 2017].)

We will see in the theorem statements in the next section that our bounds on
the Laplace accuracy are only small if c3d/

√
n and c4d

2/n are small. Therefore,
if c3, c4 grow with dimension then the Laplace approximation is only valid if
n � d2+p for some p > 0. This is natural; we cannot expect n � d2 to be a
universal condition that guarantees accuracy of the Laplace approximation in
all cases.

Another implication of growing c3, c4 is that it forces us to take r small to
satisfy (2.4), and hence c0 will also be small. We will discuss this in the next
section following our theorem statements. Finally, since q and α are powers of
polynomial growth, it seems less common for these constants to also scale with
dimension. For example, if v remains convex for all d, then we can always take
α = 1 (see Remark 2.1).

2.2 Main results on the Laplace approximation error

Recall that π ∝ e−V , where V = nv, and

m̂ = arg min
x∈Rd

V (x), HV = ∇2V (m̂).

The below theorems involve the following constants:

Kp,` = exp
(
A(q)c̄3d/

√
n
)

(1 +Bp,`), (2.11)

10



where A(q) is some constant depending only on q,

c̄3 = c3 + c4
d√
n
,

Bp,` = exp
(

(p+ `(4 + q) + d) log(r
√
ne1/α)− nc0

)
.

(2.12)

Here, p and ` are parameters arising in our general asymptotic expansion of∫
fdπ −

∫
fdγ̂. Namely, ` is the order of the expansion and p is the power of

polynomial growth assumed on f (see Proposition 4.1 for more details).
For simplicity, we assume in the below theorems that q and α, powers of

polynomial growth of v, are absolute constants.

Theorem V1 (TV asymptotics and error bound). Let L be given by

L =
1

12
E
∣∣∣〈∇3V (m̂), (H

−1/2
V Z)⊗3〉

∣∣∣ , (2.13)

where the expectation is with respect to Z ∼ N (0, Id). If v satisfies Assump-
tions A1-A4, then

TV
(
π, N (m̂,H−1

V )
)

= L+R,

|L| . c3
d√
n
, |R| . K0,2(c̄23 + c4)

(
d√
n

)2

.
(2.14)

Discussion: upper bound. Consider the leading order term L from (2.13).
Let us explain why L . c3d/

√
n, since this bound is at the heart of our

overall proof. Let W (x) = V (m̂ + H
−1/2
V x). Then we can write L as L =

E |〈∇3W (0), Z⊗3〉|. Now, one can show that

‖∇3W (0)‖ =
1√
n
‖∇3v(m̂)‖Hv ≤

c3√
n
,

explaining why L scales with n as 1/
√
n. This is also clear from the original

definition (2.13) of L, since H
−1/2
V ∼ 1/

√
n and ∇3V ∼ n. However, it is not

immediately clear why the upper bound on L scales with d as d1. Indeed, the
straightforward bound on L is the following:

L2 ≤ E
[
〈∇3W (0), Z⊗3〉2

]
≤ ‖∇3W (0)‖2 E

[
‖Z‖6

]
.

(
c3
d
√
d√
n

)2

. (2.15)

But in fact, we have

L2 ≤ E
[
〈∇3W (0), Z⊗3〉2

]
= 6‖∇3W (0)‖2F + 9‖〈∇3W (0), Id〉‖2

≤ 15d2‖∇3W (0)‖2 ≤ 15

(
c3

d√
n

)2

.
(2.16)

11



The equality is proved in Lemma D.1. To prove that the remainder TV(·)− L
is bounded as (d/

√
n)2, we prove the more general fact that

E
[
〈T,Z⊗3〉2k

]
. (d‖T‖)2k (2.17)

for a symmetric order 3 tensor T . See Section 4.5 and Appendix D.

Lower bound. To show that TV
(
π, N (m̂,H−1

V )
)
∼ d/

√
n, we need to show

L is bounded both above and below by a multiple of d/
√
n. This is true if the

inequalities in (2.16) are tight up to constants. It may be possible to show these
inequalities are generically tight in some sense, but we do not investigate this
further. Rather, we believe the value of Theorem V1 lies in its application to
individual models, since one can exploit the problem-specific structure to derive
tailored upper and lower bounds on L. For example, we will show in Section 3
that for a posterior stemming from logistic regression, L is indeed bounded both
above and below by d/

√
n. To give an example of a non-generic case, suppose

π is a product measure. Then one obtains that ∇3W (0) is a diagonal tensor,
and it follows that the Frobenius norm is an order of magnitude smaller than d
times the operator norm.

Theorem V2 (Mean asymptotics and error bound). Let L be given by

L = −1

2
H
−1/2
V 〈∇3V (m̂), H−1

V 〉. (2.18)

If v satisfies Assumptions A1-A4, then

H
1/2
V (mπ − m̂) = L+R,

‖L‖ . c3
d√
n
, ‖R‖ . K1,2(c̄23 + c4)

(
d√
n

)2 (2.19)

If v also satisfies Assumption A5, then in fact

‖R‖ . K1,3(c̄3c4 + c̄33 + c5d
−1/2)

(
d√
n

)3

+

(
c̄3

d√
n

)4

(2.20)

Remark 2.3. Note that the mode m̂ is a poor estimate of the mean mπ if π

is skewed, and we should think of H
−1/2
V L as a correction to the mode which

accounts for skew. Theorem V2 shows that if we can compute

L̂ = H
−1/2
V L = −1

2
H−1
V 〈∇

3V (m̂), H−1
V 〉, (2.21)

then the skew-corrected approximation mπ ≈ m̂+ L̂ will be much more accurate
then the approximation mπ ≈ m̂ by the mode alone. This is evident in Figure 1,
for a logistic regression example.
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Example 2.1 (Skew correction for GLMs). Consider a generalized linear model
(GLM) with likelihood

p({yi}ni=1 | {xi}ni=1, θ) ∝ exp

(∑
i

yiθ
Txi − φ(θTxi)

)
.

Here, the yi are scalar, dependent variables, the xi ∈ Rd are the independent
variables, and θ is the parameter whose posterior distribution we are interested
in. For example if φ(s) = log(1 + es) then this is the likelihood for logistic
regression. For a flat prior on θ ∈ Rd, the posterior of θ given the data takes
the same form, i.e. π(θ) ∝ e−V (θ) where

V (θ) =
∑
i

[
−yiθTxi + φ(θTxi)

]
.

It is then straightforward to compute that for k ≥ 2, we have

∇(k)V (θ) =
∑
i

φ(k)(θTxi)x
⊗k
i ,

and hence the skew correction L̂ defined in (2.21) is given by

L̂ = −1

2

n∑
i=1

φ′′′(θ̂Txi)(x
T
i H
−1
V xi)H

−1
V Xi,

where HV =
∑
i

φ′′(θ̂Txi)xix
T
i

(2.22)

and θ̂ is the mode of π, in this case also the MLE. Note that computing L̂ does
not require inverting HV , but rather only solving the linear systems xi = HV ai
for ai.

Theorem V3 (Covariance error bound). If v satisfies Assumptions A1-A4,
then we have the upper bound

‖H1/2
V (Σπ −H−1

V )H
1/2
V ‖ . K2,2(c4 + c̄23)

(
d√
n

)2

+ ‖H1/2
V (mπ − m̂)‖2.

The bound on ‖H1/2
V (mπ − m̂)‖2 can be obtained by adding together the

bounds on L and R from (2.19) in Theorem V2. Thus we se see that the total
covariance error has order (d/

√
n)2 (holding c3, c4 fixed).

We note that [Kasprzak et al., 2022] also bounds the covariance, assuming
v ∈ C3. Our bound is tighter by a factor of d/

√
n due to a symmetry-related

cancellation that can be made when v ∈ C4. [Spokoiny, 2022] also provides the
ingredients to obtain a covariance bound but does not state a bound explicitly.

Remark 2.4. Given a lower bound on λmin(HV ), the bounds in Theorems V2
and V3 can be transformed into bounds on ‖mπ − m̂‖ and ‖Σπ −H−1

V ‖, respec-
tively.
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Finally, we present our general result on the leading order correction to the
Laplace approximation of an observable expectation.

Theorem V4. Suppose |f(x)−f(m̂)| ≤ Cf‖x−m̂‖pHV for some p, Cf ≥ 0, and
that v satisfies Assumptions A1-A4. Then

EX∼π[f(X)] = EX∼γ̂ [f(X)] + L(f) +R(f),

where the leading term L(f) is given by

L(f) = −1

6
EX∼γ̂

[
f(X)

〈
∇3V (m̂), (X − m̂)⊗3

〉]
, (2.23)

and L(f), R(f) are bounded as

|L(f)| ≤ ‖f − γ̂(f)‖L2(γ̂)
c3d√
n
,

|R(f)| . Kp,2

(
Cf ∨ ‖f − γ̂(f)‖L4(γ̂)

)
(c̄23 + c4)

d2

n
.

(2.24)

Remark 2.5. Note that ‖x − m̂‖HV = np/2‖x − m̂‖Hv , so if f ∼ 1 grows
polynomially then we expect Cf ∼ n−p/2.

Remark 2.6. Theorem V3 is proven by taking f(x) = (uTx)2, ‖u‖ = 1 in Theo-
rem V4. Note that since f is even, L(f) = 0, which explains why the covariance
error is of order (d/

√
n)2 rather than d/

√
n. In Theorem V2, the leading order

term and the first of the two bounds on R also follow from Theorem V4, with
f(x) = uTx. To get the second bound on R we use the more general asymptotic
expansion of

∫
fdπ shown in Section 4.3; see Proposition 4.1.

Example 2.2 (Observable correction for GLMs). Consider the same set-up
as in Example 2.1, and suppose we want to compute E θ∼π[f(θ)], the pos-
terior expectation of a polynomially bounded observable f . Then according
to Theorem V4, we can improve the accuracy of the Laplace approximation
E θ∼π[f(θ)] ≈ E θ∼γ̂ [f(θ)] by adding the correction term L(f). For the GLM,
this corrected approximation takes the form

E θ∼π[f(θ)] ≈ E θ∼γ̂

[
f(θ)

(
1− 1

6

n∑
i=1

φ′′′(xTi θ̂)(x
T
i θ − xTi θ̂)3

)]
, (2.25)

where θ̂ is the mode of π.

Consider the constants Kp,` appearing in the above theorems. As we have
noted in the discussion in Section 2.1, if c3, c4 are large then we are forced to
take r small to satisfy (2.4), and hence c0 will also be small. If as a result, the
exponent of Bp,` (defined in (2.12)) grows with d, then the prefactor Kp,` in our
bounds would blow up. However, the following lemma rules out this possibility
under mild assumptions.
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Figure 1: Contour plots of the densities ρn := T#π with n = 15 (left), and
n = 50 (right). Here, π is the logistic regression posterior from (3.1), and

the rescaling map T (x) = H
1/2
V (x − m̂) shifts the mode to zero, marked by a

white X. The red X marks the location of the true mean (upon rescaling), and
underneath the red X is a black X, marking the location of the skew adjustment
L. On the scale depicted here, the red and black X’s are indistinguishable.

Lemma 2.1. Suppose c3d/
√
n ≤ 1 and c4d

2/n ≤ 1, and log n ≤ min(
√
n/d,

√
d).

Suppose also that (2.6) is satisfied with r = log n
√
d/n and some α > 0. Finally,

suppose p+ `(4 + q) + d ≤ Cd for some C > 1, and

max

(
C log logn,

C

2
log d,Cα−1

)
≤ 1

12
log2 n. (2.26)

Then Assumption A4 is satisfied with this choice of r (including (2.4)), and
Bp,` ≤ 1.

Assuming c3d/
√
n ≤ 1 and c4d

2/n ≤ 1 is reasonable since our bounds in
the above theorems are only small if c3d/

√
n and c4d

2/n are small. That n

is bounded by e
√
d is also a very weak requirement for large d. Also, recall

from Remark 2.1 that (2.6) is only a slight strengthening of (2.5) from Assump-
tion A4. In particular, if v is convex, then (2.6) is automatically satisfied for
any r > 0 and α = 1. See Appendix A for the proof of this lemma.

3 Example: Logistic Regression

In this section, we consider a posterior arising from logistic regression with
Gaussian design. We describe the setting in Section 3.1. In Section 3.2, we verify
Assumptions A1-A5, deriving high probability upper bounds on the constants
c3, c4, c5. This leads to overall error bounds on the mean error, covariance error,
and TV distance of the Laplace approximation. In Section 3.3 we show these
bounds are tight in their dimension dependence: namely, we show the leading
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order terms of the TV and mean asymptotics are bounded above and below by
d/
√
n.

3.1 Setting

We observe n pairs (Xi, Yi), i = 1, . . . , n, where Xi ∈ Rd are features and
Yi ∈ {0, 1} are corresponding labels, distributed according to

Xi
i.i.d.∼ N (0, Id), Yi | Xi ∼ Bernoulli(s(βTXi)).

Here, s is the sigmoid s(t) = (1 + e−t)−1 and β is the ground truth parameter.
For simplicity we take β = (1, 0, . . . , 0).

We let b ∈ Rd denote a generic parameter indexing the distributions
Y | x ∼ Bernoulli(s(bTx)). Assuming a flat prior, the posterior distribution of
b given the data is

π(b | (Xi, Yi)
n
i=1) ∝

n∏
i=1

p(Yi | Xi, b) =

n∏
i=1

s(bTXi)
Yi(1− s(bTXi))

1−Yi . (3.1)

Note that π ∝ e−V , where

V (b) = −
n∑
i=1

[
Yi log s(bTXi) + (1− Yi) log(1− s(bTXi))

]
. (3.2)

The function V is convex, and it is well-known that if the data is not linearly
separable then there exists a strict global minimum

β̂ = arg min
b∈Rd

V (b).

This point β̂ is both the MAP and the MLE, since the posterior coincides with
the likelihood. We record for future reference the second and third derivative
of V :

∇2V (b) =

n∑
i=1

s′(bTXi)XiX
T
i ,

∇3V (b) =

n∑
i=1

s′′(bTXi)X
⊗3
i .

(3.3)

3.2 Upper bounds on the approximation error

In this section, we verify Assumptions A1-A5 for the logistic regression set-
ting described above, and bound the constants c0, c3, c4, c5, r, q, α with high
probability with respect to the randomness in the data. We then apply Theo-
rems V1, V2, V3 to obtain state of the art bounds on the Laplace approximation
error for logistic regression.
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To check Assumption A1, we need to show the MLE β̂ is finite, and bounded,
with high probability. The works [Sur and Candès, 2019, Candès and Sur, 2020,
Sur, 2019] study existence of the MLE for logistic regression in the high-dimensional
regime d/n → κ ∈ (0, 1). Convergence of the MLE to the ground truth (and
therefore boundedness of the MLE) has also been studied for generalized linear
models [Spokoiny, 2017, Spokoiny, 2013, Spokoiny, 2012, He and Shao, 2000] and
exponential families [Portnoy, 1988] in limiting regimes in which d/n→ 0.

For convenience to the reader, we provide our own proof that the MLE is
bounded with high probability, which is tailored to our specific setting. However,
the proof method is inspired by Theorem 3.4 of [Spokoiny, 2017], and uses in a
crucial way Lemma 7 of Chapter 3 of [Sur, 2019]. The following lemma proves
boundedness of the MLE and at the same time, provides a lower bound on the
eigenvalues of Hv = ∇2v(β̂).

Lemma 3.1. There exist absolute constants 0 < A0 < 1 and 0 < A1, A2 such
that if d/n < A0 then

P
(
‖β̂ − β‖ ≤ 1, λmin(Hv) ≥ A2

)
≥ 1− e−d/2 − 5e−A1n.

See Appendix F for the proof. This verifies Assumption A1 (with high prob-
ability). Now, as mentioned in Remark 2.2, we can find the required constants

c3, c4, c5 by bounding ratios of the form ‖∇kv(β̂ + tu)‖/λmin(Hv)
k/2. We have

already lower bounded λmin(Hv), so it remains to upper bound the operator
norms of ∇kv for k = 3, 4, 5. We also bound the matrix norm of ∇2v for use in
a later lemma.

Lemma 3.2. Suppose d ≤ n ≤ e
√
d. Then there exist absolute constants

B0, B1 > 0 such that for k = 2, 3, 4, 5, we have

sup
b∈Rd
‖∇kv(b)‖ ≤ B0

(
1 +

dk/2

n

)
(3.4)

with probability at least 1− 2 exp(−B1

√
nd/ log(2n/d)).

See Appendix F for the proof, which relies on a result of [Adamczak et al., 2010]
bounding quantities of the form sup‖u‖=1

1
n

∑n
i=1 |XT

i u|k with high probability.
Combining the last two lemmas with the inequality (2.9), we have the following
corollary.

Corollary 3.1. Assume d/n < A0 from Lemma 3.1, and let q = 0. Then
there exist absolute constants C0, C1 > 0 such that with probability at least
1− 7 exp(−C1

√
nd/ log(2n/d))− e−d/2, Assumptions A2, A3, and A5 hold with

constants ck ≤ C0(1 + dk/2/n), k = 3, 4, 5.

This corollary shows that if d2/n is bounded by an absolute constant, then
so are c3 and c4, but that c5 scales as

√
d. Fortuitously, however, c5 appears in

our main theorems only through c5d
−1/2 (recall (2.20)).

It remains to find r, c0, α such that Assumption A4 is satisfied. Since c3 and
c4 are bounded, we can take r > 0 small enough but bounded from below by an
absolute constant, to satisfy (2.4). Next, we find c0 and α.
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Lemma 3.3. Assume d/n < A0 from Lemma 3.1. Let c3, c4 be from the above
corollary, and find r ≥ C such that (2.4) is satisfied. Then there exist absolute
constants C0, C1 > 0 such that

P
(
v(β̂ + x)−v(β̂) ≥ C0‖x/r‖Hv ∀‖x‖Hv ≥ r

)
≥ 1− 7 exp(−C1

√
nd/ log(2n/d))− e−d/2.

(3.5)

In other words, with high probability, Assumption A4 is satisfied with α = 1 and
c0 = C0.

See Appendix F for the proof. Having checked all the assumptions and
bounded the constants appearing in them, we are nearly ready to apply Theo-
rems V1-V3 to logistic regression. But first we bound the constant K appearing
in these theorems, defined in (2.11). If d2/n is bounded above by an absolute
constant, then c3, c4 are bounded from above, and c0 is bounded from below,
by absolute constants. It follows that B is exponentially small in n, and hence
K is bounded above by an absolute constant.

Corollary 3.2. Consider the logistic regression setting described in Section 3.1.
If d2/n is small enough, then there exist absolute constants C,C1, C2, C3 > 0
such that the following bounds on the TV error, mean error, and covariance
error hold with probability at least 1− C1 exp(−C2

√
nd/ log(2n/d))− C3e

−d/2:

TV
(
π, N

(
β̂,∇2V (β̂)−1

))
≤ C d√

n
,

√
n
∥∥∥E [b | {Xi, Yi}ni=1]− β̂

∥∥∥ ≤ C d√
n
,

n
∥∥∥Cov (b | {Xi, Yi}ni=1)−∇2V (β̂)−1

∥∥∥ ≤ C ( d√
n

)2

.

(3.6)

Moreover, let

L̂ = −1

2

n∑
i=1

s′′(β̂TXi)(X
T
i H

−1
V Xi)H

−1
V Xi.

When the MAP (mode) β̂ is adjusted by this skew correction term, the mean
error becomes

√
n
∥∥∥E [b | {Xi, Yi}ni=1]− (β̂ + L̂)

∥∥∥ ≤ C ( d√
n

)3

.

Here, L̂ = H
−1/2
V L, where L is defined in (2.18). We have used formula (3.3)

for ∇3V to derive the formula for L̂. This corollary follows immediately from
Theorems V1-V3, and the fact that c3, c4, c5d

−1/2 . C and Hv = ∇2v(β̂) � CId
with high probability.
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Figure 2: π ∝ e−V is the likelihood of logistic regression given n observations
in dimension d = 2. The slopes of the best-fit lines are −0.51 for the Laplace
approximation and −1.52 for the adjusted approximation.

Remark 3.1. [Kasprzak et al., 2022] also considers the Laplace approximation
error for logistic regression. Although the “universal” contribution to their error
bounds is d/

√
n, which is the right scaling with d, the authors obtain dimension

dependent upper bounds on the v-dependent component of the error, e.g. on
their analogue of c3. This is because the authors bound the operator norm of
∇3v as ‖∇3v‖ . 1

n

∑n
i=1 ‖Xi‖3, which for Gaussian design will scale with d as

d
√
d. Thus Corollary 3.2 yields the tightest known bounds, since we show the

error scales as d/
√
n even when taking into account the v-dependent constants.

Figure 2 displays the n scaling of the mean error on a log-log plot in dimen-

sion d = 2. The blue curve shows the error ‖H1/2
V (mπ − m̂)‖ of the standard

Laplace mean approximation as a function of n, while the red curve shows the

error ‖H1/2
V (mπ − m̂− L̂)‖ of the skew-adjusted Laplace mean approximation.

The slope of the best-fit lines to these two curves are −0.51 and −1.52, respec-
tively, as predicted by Corollary 3.2.

See also Figure 1, which displays the contour plots of the densities ρn := T#π
for n = 15 and n = 50, in d = 2. Here, π is the logistic regression posterior

from (3.1), and the rescaling map T (x) = H
1/2
V (x− m̂) shifts the mode to zero,

marked by a white X. The red X is the (rescaled) mean, and underneath the
red X is a black X marking the location of the skew correction term L.

3.3 Dimension scaling of leading order terms L

We now show that the leading order terms L in the TV and mean error ex-
pansions (see (2.13) and (2.18)) are bounded from below by d/

√
n. This shows

that d2 � n is necessary for the Laplace approximation to be accurate. We
will show this numerically for the random, n-sample posterior π ∝ e−V , and
rigorously for a measure π ∝ e−V̄∞ inspired by the population log likelihood.
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We start with this second example: let

V̄∞(b) = nEX,Y [Y log s(XT b) + (1− Y ) log(1− s(XT b))].

Then V̄∞ = EX [V∞(b)], where

V∞(b) = E Y [V (b) | {Xi}ni=1] =

n∑
i=1

E [Yi | Xi] log s(bTXi)

+ (1− E [Yi | Xi]) log(1− s(bTXi))

(3.7)

is the population log likelihood. Note that the logistic regression model treats
the Xi as fixed, so V∞ is the population log likelihood for each set of {Xi}ni=1,
while V̄∞ is the expectation of V∞ over the Xi.

Since the ground truth b = β minimizes the population log likelihood V∞ for
each fixed {Xi}ni=1, it follows that β is also the minimizer of V̄∞. Furthermore,
we compute

∇kV̄∞(β) = nE [s(k−1)(X1)X⊗k], k = 2, 3. (3.8)

(Recall that β = (1, 0, . . . , 0).) In Appendix F, we prove the following lemmas.

Lemma 3.4 (Leading order TV). Let L be as in (2.13) for V = V̄∞, and define
ak,p = E [s(k)(X1)Xp

1 ], where X1 ∼ N (0, 1). Then

L ≥ 2

a
1/2
1,2

√
n

(
(d− 1)

|a2,1|
a1,0

− 2|a2,3|
a1,2

)
.

Lemma 3.5 (Leading order mean error). Let L be as in (2.18) for V = V̄∞,
and let ak,p be as in Lemma 3.4. Then

‖L‖ =
1

2a
1/2
1,2

√
n

∣∣∣∣(d− 1)
a2,1

a1,0
+
a2,3

a1,2

∣∣∣∣ .
We conclude that the leading order terms L are bounded from below by d/

√
n

for the distribution π ∝ e−V∞ . We now show numerically the same property of
the n-sample random posterior for logistic regression: namely, that the leading
order terms L do not go to zero if d/

√
n remains bounded from below. We take

an increasing sequence of dimensions d, and let n be either n = 2d2 (lefthand
plot of Figure 3) or n = d2.5 (righthand plot). In the former regime, we see
that L remains bounded below as d increases, while in the latter regime, L goes
to zero. In both plots, the solid lines represent the average over 20 n-sample
posteriors, and the shaded region depicts the 25%-75% quantile.

4 Proof overview

In this section, we first apply a scale-removing change of variables to V , and
restate Theorems V1-V4 in terms of the new function W . In Section 4.3, we
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Figure 3: The size of the leading order term L from the TV asymptotics (2.13)-
(2.14) and the mean error asymptotics (2.18)-(2.19) for the logistic regression
posterior π ∝ e−V , with V given by (3.2). In the lefthand plot, we take n = 2d2

for an increasing sequence of dimensions d. We see that L does not go to zero
with d, which confirms that d2/n → 0 is necessary for an accurate Laplace
approximation. In the righthand plot we take n = d2.5. The plot (on a log-log
scale) shows that the leading order term goes to zero in this regime, as predicted
by our upper bounds in Corollary 3.2.

state our general asymptotic expansion and go over the main features of the
proof. Section 4.4 then finishes the proof of Theorems V1-V4 using the general
result from Section 4.3. Finally, Section 4.5 goes over the proof of the main
lemma which shows why d/

√
n, rather than d

√
d/
√
n, is the fundamental unit

of error. We also review the key ingredient in the proof of [Kasprzak et al., 2022]
which allows the authors to obtain the rate d/

√
n.

4.1 Simplifying Coordinate Transformation

We begin by rewriting the quantities from Theorems V1-V4 in terms of a func-
tion W obtained from V by changing variables. Namely, let γ̂ = N (m̂,H−1

V ) be
the Laplace approximation to π ∝ e−V , and define the linear map T : Rd → Rd

by T (x) = H
1/2
V (x− m̂). Then we let

ρ = T#π ∝ e−W , γ = T#γ̂ = N (0, Id),

where
W (x) = V (m̂+H

−1/2
V x) = nv(m̂+H−1/2

v x/
√
n). (4.1)

Note that W is minimized at zero, with Hessian ∇2W (0) = Id, so that γ =
N (0, Id) is the Laplace approximation to ρ. In other words, the Laplace ap-
proximation is affine invariant in the following sense: if γ̂µ is defined to be the
Laplace approximation to µ, then we have seen that γ̂T#π = T#γ̂π for all affine
maps T .

Lemma 4.1. Let W be given by (4.1) and ρ ∝ e−W . Then
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1. TV
(
π, N

(
m̂,H−1

V

))
= TV (ρ, N (0, Id)), and the leading order term L

from Theorem V1 can be expressed in terms of W as follows:

L =
1

12
E
∣∣〈∇3W (0), Z⊗3〉

∣∣ (4.2)

Therefore, Theorem V1 is equivalent to

TV (ρ, N (0, Id)) = L+R,

L ≤ c3
d√
n
, |R| ≤ K(c̄23 + c4)

(
d√
n

)2

.
(W1)

2. We have H
1/2
V (mπ − m̂) = mρ, and the leading order term L from Theo-

rem V2 can be expressed in terms of W as follows:

L = −1

2
〈∇3W (0), Id〉. (4.3)

Therefore, Theorem V2 is equivalent to showing

mρ = L+R,

‖L‖ . c3
d√
n
, ‖R‖ . K(c̄23 + c4)

(
d√
n

)2

,

‖R‖
A5

. K(c̄3c4 + c̄33 + c5d
−1/2)

(
d√
n

)3

+

(
c̄3

d√
n

)4

(W2)

The last line is the bound on ‖R‖ that holds under Assumption A5 in
addition to Assumptions A1-A4.

3. We have ‖H1/2
V (Σπ−H−1

V )H
1/2
V ‖ = ‖Σρ− Id‖. Therefore, Theorem V3 is

equivalent to showing

‖Σρ − Id‖ . K(c4 + c̄23)

(
d√
n

)2

+ ‖mρ‖2. (W3)

4. Let h = f ◦ T−1. Then |f(x) − f(m̂)| ≤ Cf‖x − m̂‖pHV if and only if
|h(x)− h(0)| ≤ Cf‖x‖p. Also, π(f) = ρ(h), γ̂(f) = γ(h), and the leading
order term L(f) from (2.23) can be expressed in terms of W and h as
follows:

L(f) = L̃(h) = −1

6
E
[
h(Z)〈∇3W (0), Z⊗3〉

]
. (4.4)

Furthermore, ‖f‖Lp(γ̂) = ‖h‖p. Therefore, Theorem V4 is equivalent to
showing that if |h(x)− h(0)| ≤ Ch‖x‖p then∫

hdρ =

∫
hdγ + L̃(h) +R(h),

|L̃(h)| ≤ c3‖h− γ(h)‖2
d√
n
,

|R(h)| . Kp,2 (Ch ∨ ‖h− γ(h)‖4) (c̄23 + c4)

(
d√
n

)2

.

(W4)
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See Appendix B.1 for the proof. This lemma shows that comparing π to
γ̂ in the sense of Theorems V1-V4 is equivalent to comparing ρ ∝ e−W to
γ ∝ e−‖x‖

2/2, the standard normal distribution. The next lemma shows that
W ’s derivatives of order higher than two are small, implying that W (x) ≈
‖x‖2/2 + const. and hence ρ ≈ γ.

Lemma 4.2. Let W be given by (4.1), and suppose v satisfies Assumptions A1-
A4 with constants c0, c3, c4, α, q, r. Then W ∈ C4 and has unique global mini-
mizer x = 0, with ∇2W (0) = Id. Furthermore, we have

‖∇3W (0)‖ ≤ c3√
n
, (4.5)

‖∇4W (x)‖ ≤ c4
n
, ∀‖x‖ ≤ 4

√
d, (4.6)

|〈∇4W (tu), u⊗4〉| ≤ c4
n

max

(
1,

t√
n

)q
, ∀‖u‖ = 1, t ≥ 0, (4.7)

W (x)−W (0) ≥ nc0
∥∥∥∥ x

r
√
n

∥∥∥∥α , ∀‖x‖ ≥ r
√
n. (4.8)

If v satisfies Assumption A5, then we also have

|〈∇5W (tu), u⊗5〉| ≤ c5
n
√
n

max

(
1,

t√
d

)q
, ∀‖u‖ = 1, t ≥ 0. (4.9)

See Appendix B.1 for the proof. We record one more property: namely, the
condition (2.4) relating c3, c4, r ensures that W is lower bounded by a quadratic
in an O(

√
n) ball around the origin.

Lemma 4.3. If v satisfies Assumptions A1-A4, then W satisfies

W (x)−W (0) ≥ ‖x‖
2

4
, ∀‖x‖ ≤ r

√
n.

See Appendix B.1 for the proof. In preparation to bound the TV distance
and observable expectation errors between ρ and γ, we define a function r such
that dρ ∝ e−rdγ. Namely, we let r(x) = W (x) − ‖x‖2/2 + const., where the
constant is chosen so that γ(r) = 0. We will write r in a more enlightening form
by considering the Taylor expansion of W :

W (x) = W (0) +
1

2
‖x‖2 +

1

3!
〈∇3W (0), x⊗3〉+ r4(x), (4.10)

for a remainder r4.

Definition 4.1. Let

r(x) =
1

3!
〈∇3W (0), x⊗3〉+ r4(x)− γ(r4), (4.11)

where r4 is the remainder in the Taylor expansion (4.10) of W . Then r satisfies
γ(r) = 0 and dρ ∝ e−rdγ.
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4.2 TV upper bound: [Kasprzak et al., 2022] proof outline

The main insight behind our bounds on the leading order TV error and remain-
der is that the straightforward operator norm inequality |〈∇3W (0), x⊗3〉| ≤
‖∇3W (0)‖‖x‖3 leads to the bound

E [〈∇3W (0), Z⊗3〉2k] ≤ ‖∇3W (0)‖2kE [‖Z‖6k] .k (c3d
√
d/
√
n)2k,

but a more careful argument shows that

E [〈∇3W (0), Z⊗3〉2k] .k (c3d/
√
n)2k.

(See more on this below, as well as the discussion following Theorem V1). How-
ever, if one is only interested in an upper bound on the TV error, then the
work [Kasprzak et al., 2022] shows we can avoid bounding E [〈∇3W (0), Z⊗3〉2k]
in the first place. Since this work does not focus on dimension dependence,
it is enlightening to review the authors’ proof method from the perspective of
dimension.

We wish to bound TV(π, γ̂) = TV(ρ, γ), where ρ = T#π ∝ e−W is the
distribution obtained by removing the scale from π, and γ is the standard normal
distribution (the Laplace approximation to ρ). First, suppose ρ is strongly log-
concave. By Pinsker’s inequality and the log Sobolev inequality (LSI), we then
have

TV(ρ, γ) ≤
√

KL( γ || ρ) . E γ [‖∇ log(γ/ρ)‖2] = E [‖∇r(Z)‖2]. (4.12)

Here, . hides the constant of strong log-concavity, and r is the function from
Definition 4.1 satisfying dρ ∝ e−rdγ. But now note that the leading order term
of ∇r is

∇r(x) ≈ 1

2
〈∇3W (0), x⊗2〉,

and therefore in a neighborhood of the origin we have

‖∇r(x)‖ . ‖∇3W (0)‖‖x‖2. (4.13)

Therefore, E [‖∇r(Z)‖2] . ‖∇3W (0)‖2E [‖Z‖4] . c23d
2/n. The key point is that

applying an LSI allows us to bound the TV error in terms of the gradient of r,
whose leading order term is now a second order polynomial. In other words, we
brought the order of the polynomial in x down from 3 to 2. To get the right
dependence on d, one can now bound the Gaussian expectation of ‖∇r‖ using
the straightforward operator norm inequality (4.13).

This is the essence of the proof. Note that [Kasprzak et al., 2022] does not
actually assume ρ ∝ e−W is strongly log concave but rather applies an LSI
locally, in a neighborhood of zero. In this neighborhood, we have W (x) ≈
W (0) + ‖x‖2/2, so there is some absolute constant of strong log-concavity. One
must then also deal with tail integrals, since this whole argument holds only
locally.
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4.3 Asymptotics for an observable expectation

We have shown that comparing π to γ̂ is equivalent to comparing ρ ∝ e−W to
γ ∝ e−‖x‖2/2, and Lemma 4.2 already suggests that W (x) ≈W (0)+‖x‖2/2 and
hence ρ ≈ γ. In this section, we make this precise. Note that TV(ρ, γ), ‖mρ‖,
and ‖Σρ − Id‖ are all given by supf∈F

∫
fdρ −

∫
fdγ for different classes F .

Therefore, we start by decomposing
∫
fdρ−

∫
fdγ into leading and remainder

terms, for a polynomially bounded function f .
To state our preliminary decomposition of

∫
fdρ−

∫
fdγ, we introduce some

notation.

Definition 4.2. Let

Lk(f) =

∫
g

k∑
j=0

(−1)j

j!
rjdγ,

Ek+1(f) =

∫
ge−rdγ − Lk(f)

(4.14)

(“L” for leading, “E” for error), where g = f if f is a constant function, and
g = f − γ(f) otherwise. For example,

L2(f) =

∫
(f − γ(f))

(
1− r +

r2

2

)
dγ =

∫
(f − γ(f))

(
−r +

r2

2

)
dγ,

E3(f) =

∫
(f − γ(f))

(
e−r − 1 + r − r2

2

)
dγ =

∫
(f − γ(f))

(
−r

3

3!
+−r

4

4!
− ...

)
dγ,

L1(1) =

∫
(1− r)dγ = 1, E2(1) =

∫
(e−r − 1 + r)dγ =

(4.15)

With this notation, and using that dρ ∝ e−rdγ, we have for any m ≥ 1 that∫
fdρ−

∫
fdγ =

∫
(f − γ(f))e−rdγ∫

e−rdγ
=
Lm(f) + Em+1(f)

Lm−1(1) + Em(1)
. (4.16)

As this formula suggests, we can write
∫
fdρ−

∫
fdγ as Lm(f)/Lm−1(1) plus a

remainder. Indeed, a straightforward computation in Appendix B.2 shows that∣∣∣∣∫ fdρ−
∫
fdγ − Lm(f)

Lm−1(1)

∣∣∣∣ ≤ |Em+1(f)|+ |Em(1)|
∣∣∣∣ Lm(f)

Lm−1(1)

∣∣∣∣ (4.17)

Now, from the formula (4.11) for r we see that r = o(1), since derivatives of W
of order higher than 2 are o(1). Therefore, the Lm’s and Em’s are dominated by
the contribution from the lowest power of r. The lowest power of r contributing
to Lk(f) is r1 for all k ≥ 1 (note that the r0 term always drops out, as seen in
the first line of (4.15)), while the lowest power of r contributing to Ek(f), Ek(1)
is rk (meaning the first power of r appearing in the tail of the Taylor expansion
of the exponential; see e.g. the second expression for E3(f) in (4.15)). Therefore
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the second error term in (4.17) involving Em(1)Lm(f) is on the same order as
the first error term Em+1, in terms of total powers of r. This explains why we
split the denominator of (4.16) as Lm−1 + Em rather than Lm + Em+1.

To be a bit more precise, we will essentially show that the righthand side
of (4.17) is dominated by ‖r‖m+1

2m+2. The following key lemma shows that

‖r‖2m+2 ∼ d/
√
n. This is the reason why d/

√
n, rather than d

√
d/
√
n, is the

fundamental unit of error.

Lemma 4.4. We have

E
[〈
∇3W (0), Z⊗3

〉2m]
.m

(
d‖∇3W (0)‖

)2m ≤ (c3 d√
n

)2m

, (4.18)

E
[
(r4(Z)− γ(r4))

2m
]
.m

(
c4
d2

n

)2m

, (4.19)

and therefore
‖r‖2m .m c̄3d/

√
n.

Since this lemma is central, we outline its proof in Section 4.5 below. Using
the key lemma 4.4 as well as a few additional technical results, we obtain the
following bound on the remainder in (4.17), which holds for any polynomially
bounded f .

Proposition 4.1. Let |f(x) − f(0)| ≤ Cf‖x‖p and ε = d/
√
n, and define

Kp,m+1 = eA(q)c̄3ε(1 +Bp,m+1), where

Bp,m+1 = exp
(

(p+ (m+ 1)(q + 4) + d) log(r
√
ne1/α)− nc0

)
.

Then∣∣∣∣ ∫ fdρ−
∫
fdγ − L1(f)

∣∣∣∣ .p Kp,2 (Cf ∨ ‖f − γ(f)‖4) (c̄3ε)
2
,∣∣∣∣ ∫ fdρ−

∫
fdγ − L2(f)

∣∣∣∣ .p Kp,3 (Cf ∨ ‖f − γ(f)‖4) (c̄3ε)
3

(1 + c̄3ε) .

(4.20)

If m ≥ 3, then there exists a constant C(m) < 1 such that if c̄3ε ≤ C(m) then∣∣∣∣ ∫ fdρ−
∫
fdγ − Lm(f)

Lm−1(1)

∣∣∣∣
.p,m Kp,m+1 (Cf ∨ ‖f − γ(f)‖4) (c̄3ε)

m+1
.

(4.21)

When m ≥ 3, the denominator Lm−1(1) no longer equals one exactly, and
we show in Lemma B.3 that |Lm−1(1) − 1| .m c̄3ε + (c̄3ε)

m−1. This upper
bound must be small enough to ensure that Lm−1(1) > 0, explaining why there
is a smallness condition on c̄3ε when m ≥ 3.

Proposition 4.1 is of independent interest, since it can be used to approx-
imate expectations under ρ by expectations under the standard normal, for
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arbitrary polynomially bounded f . Of course, there remains the difficulty of
writing Lm(f)/Lm−1(1) in a tractable way. The idea is to Taylor expand r
to sufficiently high order, so that Lm(f)/Lm−1(1) is given by a ratio of the
form

∫
fqmdγ/

∫
qmdγ plus a negligible remainder, where qm is a polynomial

whose coefficients are functions of the derivatives of W at the origin (recall that
r = W − ‖ · ‖2/2 + const. so r and W have the same derivatives at the origin).

For small values of m, this is relatively straightforward. For example, when
m = 1 we have L1(f) = −

∫
frdγ, using that

∫
rdγ = 0. The above proposition

then gives a bound on the deviation |
∫
fdρ−

∫
fdγ+

∫
(f −γ(f))rdγ|. Now we

substitute r = 1
3! 〈∇

3W (0), x⊗3〉+(r4−γ(r4)) and treat
∫

(f−γ(f))(r4−γ(r4))dγ
as a remainder term. Using the bound on ‖r4‖2 provided in Lemma 4.4, we
immediately obtain the following corollary of Proposition 4.1:

Corollary 4.1. Let |f(x)− f(0)| ≤ Cf‖x‖p, and

L(f) = −1

6

∫
f(x)〈∇3W (0), x⊗3〉dγ(x). (4.22)

Then∣∣∣∣ ∫ fdρ−
∫
fdγ − L(f)

∣∣∣∣ .p Kp,2 (Cf ∨ ‖f − γ(f)‖4) (c̄23 + c4)
d2

n
(4.23)

Although we have called L1(f) a “leading order” term, we note that L(f) is
itself the leading order contribution to L1(f) = −

∫
frdγ, which is obtained by

dropping r4 − γ(r4) from r.
In Section 4.4, we apply this corollary to get the leading order asymptotics

of the TV error, mean error, and covariance. For the mean, we will also apply
Proposition 4.1 with m = 2 to get a stronger result. Similarly, one can apply
Corollary 4.1 with m = 1 for all 1-Lipschitz f to derive the leading order term
of the Wasserstein-1 distance. Note that the bound depends on ‖f − γ(f)‖4
rather than on ‖f‖4. This is important since Lipshitz functions of a standard
normal are sub-Gaussian when centered on their mean.

We end this section by giving a few details about the proof of Proposition 4.1.
We start with the upper bound (4.17), and use the following preliminary de-
composition of the error Ek.

Lemma 4.5. Let U = {‖x‖ ≤ 4
√
d}. Then

Ek(f) ≤ 2‖g‖4 (1 + ‖e−rχU‖4) ‖r‖k2k +

∫
Uc
|g||r|ke−rdγ, (4.24)

where g = f if f is constant, and g = f − γ(f) otherwise.

See Appendix B.2 for the proof of this decomposition. The main contribu-
tion to this upper bound is the first summand, while the second is exponentially
small. Lemma 4.4 gives us the (c̄3d/

√
n)k scaling of the first term, but we also

need to show ‖e−rχU‖4 is an O(1) correction. Recall again formula (4.11) for
r. On {‖x‖ ≤ 4

√
d}, the function r is dominated by the cubic 〈∇3W (0), x⊗3〉,
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which can reach values up to d
√
d/
√
n. This seems like an obstacle to bound-

ing ‖e−rχU‖4. However, one can show that ∇r is L-Lipschitz, with a Lipschitz
constant L ∼ d/

√
n, in this region. Therefore, we can apply Herbst’s argument

on the exponential integrability of Lipschitz functions with respect to the Gaus-
sian (or any measure satisfying a log Sobolev inequality). See Lemma B.2 in
Appendix B.2 for more details.

See Appendix B.2 for the full proof of Proposition 4.1, in which we up-
per bound Ek using (4.24), and we also upper bound Lm(f) and lower bound
Lm−1(1).

4.4 Finishing the proof of Theorem V1, V2, V3, V4

Recall that it is equivalent to prove (W1), (W2), (W3), (W4). First, we use
Corollary 4.1 with all ‖f‖∞ ≤ 1/2 (so that p = 0, Cf = 1), to get the TV
asymptotics for ρ. We have

|R| =
∣∣∣∣TV(ρ, γ)− 1

12
E
∣∣〈∇3W (0), Z⊗3〉

∣∣ ∣∣∣∣
=

∣∣∣∣∣ sup
‖f‖∞≤1/2

(∫
fdρ−

∫
fdγ

)
− 1

6
sup

‖f‖∞≤1/2

E
[
f(Z)〈∇3W (0), Z⊗3〉

]∣∣∣∣∣
≤ sup
‖f‖∞≤1/2

∣∣∣∣∫ fdρ−
∫
fdγ − 1

6
E
[
f(Z)〈∇3W (0), Z⊗3〉

]∣∣∣∣
. K0,2(c̄23 + c4)

d2

n
.

(4.25)

To finish the proof of (W1), it remains to bound |L| = 1
12E

∣∣〈∇3W (0), Z⊗3〉
∣∣.

The fact that |L| . c3d/
√
n is shown in Corollary D.1; see also Section 4.5 for

a discussion of this result.

Next we turn to the proof of (W2). We apply Corollary 4.1 with functions
fu(x) = uTx, with ‖u‖ = 1 (so that p = 1, Cf = 1). First we compute the
leading order term L(fu) defined in (4.22). We have

L(fu) = −1

6

∫
uTx〈∇3W (0), x⊗3〉dγ(x) = −1

2
uT
∫
〈∇3W (0), x⊗2〉dγ(x)

= −1

2
uT 〈∇3W (0), Id〉 = uTL.

(4.26)

Here, L is as in (4.3), and we used Gaussian integration by parts to get the
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second equality. It follows by Corollary 4.1 that

‖R‖ = ‖mρ − L‖ = sup
‖u‖=1

|uTmρ − uTL|

= sup
‖u‖=1

∣∣∣∣∫ uTxdρ(x)−
∫
uTxdγ(x)− L(fu)

∣∣∣∣
. K1,2(c̄23 + c4)

d2

n
,

(4.27)

noting that ‖fu‖4 = E [(uTZ)4]1/4 ≤ 2 for all ‖u‖ = 1. This proves the first
bound on R stated in (W2). To prove the second bound, we use Proposition 4.1
with m = 2. We show that the leading order contribution to L2(fu) is L(fu)
itself. Hence, the leading order term does not change, and the remainder turns
out to be an order of magnitude smaller. See Appendix B.3 for this proof of the
second bound on R. The upper bound on ‖L‖ stated in (W2) follows from (1.10)
and the fact that ‖∇3W (0)‖ ≤ c3/

√
n by Lemma 4.2.

To prove (W3), we apply Corollary 4.1 with functions fu(x) = (uTx)2,
for ‖u‖ = 1 (so that p = 2, Cf = 1). First we note that L(fu) = 0 since
(uTx)2〈∇3W (0), x⊗3〉 is an odd order polynomial. Thus we have

‖R‖ = ‖Σρ − Id‖ ≤ sup
‖u=1

uTEX∼ρ[XX
T − Id]u+ ‖mρ‖2

= sup
‖u‖=1

∣∣∣∣∫ (uTx)2dρ(x)−
∫

(uTx)2dγ(x)− L(fu)

∣∣∣∣+ ‖mρ‖2

. K2,2(c̄23 + c4)
d2

n
+ ‖mρ‖2,

(4.28)

noting that ‖fu‖4 = E [(uTZ)8]1/4 ≤ 4 for all ‖u‖ = 1.
Finally, note that Corollary 4.1 nearly finishes the proof of (W4), and it

remains only to bound L(f). This bound follows from Cauchy-Schwarz and
Corollary D.1.

4.5 Proof of Key Lemma 4.4

We start by discussing the bound (4.19) on E [(r4(Z) − γ(r4))2m]. Recall that
r4 is the fourth order remainder in the Taylor expansion (4.10) of W . By the
Taylor remainder theorem, r4 can be written as

r4(x) =
1

4!
〈∇4W (tx), x⊗4〉

for some t ∈ [0, 1] depending on x. Recall from Lemma 4.2 that ∇4W scales as
1/n, so Cauchy-Schwarz essentially gives that

E [|r4(Z)|p] . (1/n)pE [‖Z‖4p] .p (d2/n)p,

since E [‖Z‖k] ∼ dk/2. Therefore, it is completely straightforward to show that
‖r4‖p . d2/n. Lemma C.1 provides the rigorous proof, showing that

‖r4‖2m .m c4d
2/n, (4.29)
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and hence E [(r4(Z)−γ(r4))2m] .m (c4d
2/n)2m. Next, we turn to the bound (4.18)

on E
[
〈∇3W (0), Z⊗3〉2m

]
. We wish to show this scales as (d/

√
n)2m. Recall that

‖∇3W (0)‖ ≤ c3/
√
n, so a straightforward bound would give

E
[
〈∇3W (0), Z⊗3〉2m

]
≤ (c3/

√
n)2mE [‖Z‖6m] . (c3d

√
d/
√
n)3m

rather than the desired bound (d/
√
n)2m. To get the right scaling with d, we

first show that it is sufficient to prove E
[
〈∇3W (0), H3(Z)〉2m

]
. (d/

√
n)2m,

where H3(Z) is the tensor of third order Hermite polynomials of Z. To prove
this modified result, we first compute the base case 2m = 2 explicitly. Namely,
we show that

E
[
〈∇3W (0), H3(Z)〉2

]
= 3!‖∇3W (0)‖2F ≤ 3!d2‖∇3W (0)‖2 ≤ 3!c3(d/

√
n)2,
(4.30)

which is the right dependence on d for the case 2m = 2. We then use hy-
percontractivity of the Ornstein-Uhlenbeck semigroup, for which the Hermite
polynomials are eigenfunctions, to relate the 2m norm to the 2 norm:

E
[
〈∇3W (0), H3(Z)〉2m

]
.m E

[
〈∇3W (0), H3(Z)〉2

]m
.m (c3d/

√
n)2m.

The final result, shown in Corollary D.1, is that

E
[〈
∇3W (0), Z⊗3

〉2m]
.m (c3d/

√
n)2m. (4.31)

See Section D leading up to this corollary for the full proof. This finishes the
proof of Lemma 4.4.

A Proof of Lemma 2.1

Proof of Lemma 2.1. Using that c3d/
√
n ≤ 1, c4d

2/n ≤ 1, r = log n
√
d/n, and

log n ≤
√
d, we get

4c3r + c4r
2 ≤ 4

√
n

d
(log n

√
d/n) +

n

d2
(log n

√
d/n)2

= 4
log n√
d

+
log2 n

d
< 6,

(A.1)

verifying (2.4). Since (2.6) holds with this choice of r, it follows that Assump-
tion A4 is satisfied. Now, by Lemma 4.3, we have that

‖y‖2

4
≤W (y)−W (0) = nv(m̂+H−1/2

v y/
√
n)− nv(m̂), ∀‖y‖ ≤ r

√
n.

Let x = H
−1/2
v y/

√
n. Then ‖y‖ =

√
n‖x‖Hv , so in terms of x this inequality

takes the form

n

4
‖x‖2Hv ≤ nv(m̂+ x)− nv(m̂), ∀‖x‖Hv ≤ r.
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Hence

nc0 := inf
‖x‖Hv=r

nv(m̂+ x)− nv(m̂) ≥ nr2

4
= n

log2 n

4
(d/n) =

log2 n

4
d.

But then, using that p+ (4 + q)`+ d ≤ Cd, we have

logBp,` = (p+ (4 + q)`+ d)
(
log(r

√
n) + α−1

)
− nc0

≤ Cd(log(
√
d log n) + α−1)− log2 n

4
d

=

(
C log log n+

C

2
log d+ Cα−1 − log2 n

4

)
d ≤ 0,

(A.2)

so Bp,` ≤ 1. To get the final inequality we used (2.26).

B Proofs from Section 4

B.1 Proofs from Section 4.1 relating V to W

For the proof of Lemma 4.1, we use the following identity.

Lemma B.1. Let W (x) = V (Ax+ b) for a symmetric matrix A. Then

〈∇3W (0), Id〉 = A〈∇3V (b), A2〉. (B.1)

Proof. Let Aj denote the jth column of A. Then

〈∇3W (0), Id〉i = 〈∇3W (0), Id ⊗ ei〉 =

d∑
j=1

〈∇3W (0), ej ⊗ ej ⊗ ei〉

=

d∑
j=1

〈∇3V (b), Aj ⊗Aj ⊗Ai〉

= 〈∇3V (b), A2 ⊗Ai〉 = ATi 〈∇3V (b), A2〉
= (AT 〈∇3V (b), A2〉)i = (A〈∇3V (b), A2〉)i.

(B.2)

To get the third line we noted that
∑d
j=1Aj ⊗ Aj = AAT = A2. We have

shown that the ith coordinate of 〈∇3W (0), Id〉 equals the ith coordinate of
A〈∇3V (b), A2〉, so 〈∇3W (0), Id〉 = A〈∇3V (b), A2〉.

Proof of Lemma 4.1. The fact that the TV distances are equal follows from the
data processing inequality and the fact that T is a bijection. The formula (4.2)
for L in terms of W is immediate using the relationship between V and W . To

prove point 2, note that T is linear, so mρ = T (mπ) = H
1/2
V (mπ − m̂). The

formula (4.3) for L in terms of W follows from Lemma B.1 with A = H
−1/2
V and

b = m̂. Point 3 follows from the fact that Σρ = H
1/2
V ΣπH

1/2
V . Finally, point 4
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follows using the definition of the HV weighted norms and standard change of
variables.

Proof of Lemma 4.2. We first relate tensor norms and inner products involving
W to the corresponding quantities for v. In the next two equations, let y(x) =

H
−1/2
v x/

√
n, so that ‖y(x)‖Hv = ‖x‖/

√
n. First, we have

‖∇kW (x)‖ = sup
‖u‖=1

〈∇kW (x), u⊗k〉

= sup
‖u‖=1

〈
n∇kv(m̂+H−1/2

v x/
√
n), (H−1/2

v u/
√
n)⊗k

〉
= n1−k/2 sup

‖u‖=1

〈
∇kv(m̂+ y(x)), H−1/2

v u⊗k
〉

= n1−k/2 sup
‖w‖Hv=1

〈
∇kv(m̂+ y(x)), w⊗k

〉
= n1−k/2‖∇kv(m̂+ y(x))‖Hv ,

(B.3)

where the last line follows by (G.1) below (using the fact that ∇kv(m̂ + y(x))
is a symmetric tensor). Second,

〈∇kW (tu), u⊗k〉 =
〈
n∇kv(m̂+H−1/2

v tu/
√
n), (H−1/2

v u/
√
n)⊗k

〉
= n

〈
∇kv(m̂+ ty(u)), y(u)⊗k

〉 (B.4)

Using (B.3), the relationship between ‖x‖ and ‖y(x)‖Hv , and Assumption A2,
we see that ‖∇3W (0)‖ = n−1/2‖∇3v(m̂)‖Hv ≤ c3/

√
n, and

sup
‖x‖≤4

√
d

‖∇4W (x)‖ = n−1 sup
‖y‖Hv≤4

√
d/n

‖∇4v(m̂+ y)‖ ≤ c4/n.

This proves (4.5) and (4.6). Now, fix ‖u‖ = 1, so that ‖
√
ny(u)‖Hv = 1.

Using (B.4) and Assumption A3, we then have

〈∇4W (tu), u⊗4〉 = n
〈
∇4v(m̂+ ty(u)), y(u)⊗4

〉
=

1

n

〈
∇4v

(
m̂+

t√
n

√
ny(u)

)
, (
√
ny(u))⊗4

〉
≤ c4

n
max

(
1,

t√
n

)q
,

(B.5)

proving (4.7). Next, fix ‖x‖ ≥ r
√
n, so that ‖y(x)‖Hv ≥ r. Then by Assump-

tion A4, we have

W (x)−W (0) = nv(m̂+H−1/2
v x/

√
n)− nv(m̂)

= nv(m̂+ y(x))− nv(m̂) ≥ nc0‖y(x)/r‖αHv
= nc0‖x/(r

√
n)‖α.

(B.6)

This proves (4.8). Finally, (4.9) follows from Assumption A5 analogously to
how (4.7) follows from Assumption A3.
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Proof of Lemma 4.3. Recall from Assumption A4 that r ≤ 1. Fix ‖x‖ ≤ r
√
n ≤√

n and write x = ‖x‖u for some ‖u‖ = 1. Then for some t ∈ [0, ‖x‖] ⊂ [0,
√
n]

we have by Taylor’s theorem

W (x)−W (0) =
‖x‖2

2
+

1

6
〈∇3W (0), x⊗3〉+

1

24
〈∇4W (tu), (‖x‖u)⊗4〉

≥ ‖x‖
2

2
− c3‖x‖3

6
√
n
− c4‖x‖4

24n

=
‖x‖2

2

(
1− c3‖x‖

3
√
n
− c4‖x‖2

12n

)
.

(B.7)

using that ‖∇3W (0)‖ ≤ c3/
√
n by (4.5), and sup|t|≤

√
n〈∇4W (tu), u⊗4〉 ≤ c4/n

for all ‖u‖ = 1, which follows by (4.7). Upper bounding ‖x‖ by r
√
n, we get

the further lower bound

W (x)−W (0) ≥ ‖x‖
2

2

(
1− c3r

3
− c4r

2

12

)
≥ ‖x‖2/4, (B.8)

using (2.4) to get the last inequality.

B.2 Proof of Proposition 4.1

The proof of Proposition 4.1 will follow from the lemmas stated in Section 4.3
and a number of additional lemmas proved here.

Proof of (4.17). We compute∣∣∣∣∫ fdρ−
∫
fdγ − Lm(f)

Lm−1(1)

∣∣∣∣ =

∣∣∣∣Lm(f) + Em+1(f)

Lm−1(1) + Em(1)
− Lm(f)

Lm−1(1)

∣∣∣∣
=

∣∣∣∣Em+1(f)Lm−1(1)− Lm(f)Em(1)

(Lm−1(1) + Em(1))Lm−1(1)

∣∣∣∣
≤
∣∣∣∣Em+1(f)Lm−1(1)− Lm(f)Em(1)

Lm−1(1)

∣∣∣∣
≤ |Em+1(f)|+ |Em(1)|

∣∣∣∣ Lm(f)

Lm−1(1)

∣∣∣∣ ,
(B.9)

where in the third line we used that Lm−1(1)+Em(1) =
∫
e−rdγ ≥ e

∫
−rdγ = 1,

since
∫
rdγ = 0.

Proof of Lemma 4.5. The Taylor remainder of e−r of order k is given by

e−r −

k−1∑
j=0

(−1)jrj/j!

 =
rk

k!
eξ

for some ξ between 0 and −r. But then eξ ≤ 1 + e−r, so that∣∣∣∣∣∣e−r −
k−1∑
j=0

(−1)jrj/j!

∣∣∣∣∣∣ ≤ |r|k + |r|ke−r.
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Now, we have

|Ek(f)| =
∣∣∣∣ ∫ g

(
e−r −

( k−1∑
j=0

(−1)jrj/j!
))
dγ

∣∣∣∣ ≤ ∫ |g||r|kdγ +

∫
|g||r|ke−rdγ

=

∫
|g|rkdγ +

∫
|g|rk(e−rχU )dγ +

∫
Uc
|g||r|ke−rdγ

≤ ‖g‖2‖r‖k2k + ‖g‖4‖r‖k2k‖e−rχU‖4 +

∫
Uc
|g||r|ke−rdγ

≤ ‖g‖4‖r‖k2k(1 + ‖e−rχU‖4) +

∫
Uc
|g||r|ke−rdγ.

(B.10)

To get the second to last line, we applied Cauchy-Schwarz to
∫
|g|r2dγ and

generalized Hölder to
∫
|g||r|k(e−rχU )dγ with powers 4, 2, 4 to the factors |g|,

|r|k, and e−rχU , respectively.

Next, we bound ‖e−rχU‖4.

Lemma B.2. Let ε = d/
√
n. Then ‖e−rχU‖4 ≤ eA(q)c̄3ε.

Proof. We first bound ‖∇r(x)‖ for x ∈ U = {‖x‖ ≤ 4
√
d}. To do so, we Taylor

expand ∇r:

∇r(x) = ∇(W (x)− ‖x‖2/2) = ∇W (x)−∇W (0)− x
= ∇W (x)−∇W (0)− 〈∇2W (0), x〉

=
1

2
〈∇3W (0), x⊗2〉+

1

6
〈∇4W (tx), x⊗3〉,

(B.11)

for some t ∈ [0, 1]. Therefore,

sup
‖x‖≤4

√
d

‖∇r(x)‖ ≤ 1

2
16d‖∇3W (0)‖+

1

6
64d
√
d sup
‖x‖≤4

√
d

‖∇4W (x)‖

≤ 8
c3d√
n

+ 12
c4d
√
d

n
≤ 12(c3ε+ c4ε

2) = 12c̄3ε =: L

(B.12)

To get the third inequality we used point 1 of Lemma 4.2. Hence, −4r is 4L-
Lipschitz in U . Let γU be the Gaussian measure restricted to U . Using Herbst’s
argument on the exponential integrability of Lipschitz functions with respect to
a measure satisfying a log Sobolev inequality (for γU , with constant 1) we have(∫

U
e−4rdγ

)1/4

≤
(∫

e−4rdγU

)1/4

≤
(
e
∫

(−4r)dγU e(4L)2/2
)1/4

= exp

(
−
∫
rdγU + 2L2

)
≤ exp

(∫
Uc
|r|dγ + 2L2

)
,

(B.13)
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using that
∫
rdγ = 0 on Rd. See Proposition 5.4.1 of [Bakry et al., 2014] for a

reference on Herbst’s argument. Now, using Lemma C.2, we have on the set Uc
the following upper bound:

|r(x)| .q c̄3ε‖x‖4+q. (B.14)

Hence ∫
Uc
|r|dγ .q c̄3εE

[
‖Z‖4+q{‖Z‖ ≥ 4

√
d}
]
.q c̄3ε, (B.15)

and ∫
Uc
|r|dγ + 2L2 .q c̄3ε,

recalling that L = 12c̄3ε. Therefore,

‖e−rχU‖4 ≤ exp (A(q)c̄3ε)

for some constant A(q), as desired.

Using the above bounds, the key Lemma 4.4 bounding ‖r‖, and the tail
bound in Lemma E.1 below, we get the following further upper bound on Ek(f).

Corollary B.1. Suppose |f(x)− f(0)| ≤ Cf‖x‖p. Then

|Ek(f)| .p,k Kp,k(Cf ∨ ‖g‖4)(c̄3ε)
k, (B.16)

where as usual the meaning of Ek(f) and g depends on whether or not f is
constant.

Proof. First, note that if |f(x)− f(0)| ≤ Cf‖x‖p, then |γ(f − f(0))| .p Cfdp/2,

and therefore on {‖x‖ ≥ 4
√
d}, we have |g(x)| = |f(x) − γ(f)| .p Cf‖x‖p.

Alternatively, if f is a constant, then g = f = Cf satisfies |g| ≤ Cf‖x‖p with
p = 0. Substituting this inequality, as well as the bound from Lemma B.2
into (4.24), we get

|Ek(f)| .p eA(q)c̄3ε‖g‖4‖r‖kk + Cf

∫
Uc
‖x‖p|r|ke−rdγ

.p,k e
A(q)c̄3ε‖g‖4(c̄3ε)

k + CfKp,k(c̄3ε)
k

. Kp,k(Cf ∨ ‖g‖4)(c̄3ε)
k,

(B.17)

as desired. We used Lemma 4.4 and Lemma E.1 to get the second line.

Next, we bound |Lm(f)| and |Lm−1(1)− 1|.

Lemma B.3. We have L0(1) = L1(1) = 1 and

|Lm(f)| .m ‖f − γ(f)‖2(c̄3ε+ (c̄3ε)
m),

|Lm(1)− 1| .m c̄3ε+ (c̄3ε)
m (B.18)
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Proof. L0(1) = 1 by definition, L1(1) =
∫

(1 − r)dγ = 1 since
∫
rdγ = 0, and

L1(f) = −
∫

(f − γ(f))rdγ, so |L1(f)| ≤ ‖f − γ(f)‖2‖r‖2 ≤ ‖f − γ(f)‖2(c̄3ε) by
Lemma 4.4. Next take m ≥ 2. Note that

Lm(f) =

∫
(f − γ(f))(1− r + ...)dγ =

∫
(f − γ(f))(−r + ...)dγ,

i.e. the term with r0 goes away. Hence

|Lm(f)| ≤
m∑
k=1

∫
|f − γ(f)| |r|

k

k!
dγ

≤ ‖f − γ(f)‖2
m∑
k=1

‖r‖k2k .m ‖f − γ(f)‖2
m∑
k=1

(c̄3ε)
k

.m ‖f − γ(f)‖2(c̄3ε+ (c̄3ε)
m)

(B.19)

Similarly, note that Lm(1)− 1 =
∫

(−r + ...)dγ, and hence

|Lm(1)− 1| ≤
m∑
k=1

∫
|r|k

k!
dγ

≤
m∑
k=1

‖r‖kk .m

m∑
k=1

(c̄3ε)
k

.m c̄3ε+ (c̄3ε)
m.

(B.20)

Using the above lemmas, we can now prove Proposition 4.1.

Proof of Proposition 4.1. Using (4.17), Corollary B.1, and Lemma B.3, we have∣∣∣∣ ∫ fdρ− ∫ fdγ − Lm(f)

Lm−1(1)

∣∣∣∣
.m,p Kp,m+1(Cf ∨ ‖f − γ(f)‖4)(c̄3ε)

m+1 +Kp,m(c̄3ε)
m‖f − γ(f)‖2

(c̄3ε) + (c̄3ε)
m

Lm−1(1)

.m,p Kp,m+1(Cf ∨ ‖f − γ(f)‖4)(c̄3ε)
m+1

(
1 +

1 + (c̄3ε)
m−1

Lm−1(1)

)
(B.21)

Now we distinguish between three cases: m = 1, m = 2, m ≥ 3. If m = 1 then
the expression in parentheses equals 2, an absolute constant, and we are done.
If m = 2 then Lm−1(1) = 1 and the expression in parentheses is bounded by
1 + c̄3ε. Finally, consider m ≥ 3 and suppose c̄3ε ≤ 1. Then by Lemma B.3 we
have |Lm−1(1)−1| .m c̄3ε, so if c̄3ε ≤ C(m) for a small enough constant C(m),
then Lm−1 > 1/2, and hence the expression in parentheses is bounded by an
absolute constant.
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B.3 Proofs from Section 4.4

Proof of second bound on R from (W2). Let fu(x) = uTx, and recall the nota-
tion Lk(f) from Section 4.3. We have

L2(fu) = −E [uTZr(Z)] +
1

2
E [uTZr(Z)2].

We will use the following two representations of r(x), which stem from Taylor
expanding W either to third or fourth order, and recalling that r is defined to
have expectation zero:

r(x) = p3(x) + [r4(x)− γ(r4)],

= p3(x) + [p4(x)− γ(p4)] + [r5(x)− γ(r5)],
(B.22)

where

pk(x) =
1

k!
〈∇kW (0), k⊗4〉, rk(x) =

1

k!
〈∇kW (tx), x⊗k〉,

for some t ∈ [0, 1], and the second representation in (B.22) holds under Assump-
tion A5. Thus

L2(fu) =− E [uTZ (p3(Z) + p4(Z)− γ(p4) + r5(Z)− γ(r5))]

+
1

2
E
[
uTZ(p3(Z) + r4(Z)− γ(r4))2

]
=uTL− E [uTZr5(Z)]

+ E
[
uTZp3(Z)(r4(Z)− γ(r4))

]
+

1

2
E
[
uTZ(r4(Z)− γ(r4))2

]
.

(B.23)

We used the second representation of r to write −E [uTZr(Z)] in the first line
of (B.23), and the first representation of r to write 1

2E [uTZr(Z)2] in the second
line of (B.23). In the third line of (B.23), we used that −E [uTZp3(Z)] is
precisely L(fu) = uTL (as shown in (4.26)). We also used that E [uTZ(p4(Z)−
γ(p4))] = 0, since this observable is an odd order polynomial of Z. Finally, in
the fourth line we expanded the square (from the second line), and used that
E [uTZp3(Z)2] = 0 since the observable is an odd order polynomial. Now, let

R2,u = −E [uTZr5(Z)]+E
[
uTZp3(Z)(r4(Z)− γ(r4))

]
+

1

2
E
[
uTZ(r4(Z)− γ(r4))2

]
,

so that L2(fu) = uTL+R2,u. We have the bound

|R2,u| . ‖fu‖2‖r5‖2 + ‖fu‖2‖p3‖4‖r4‖4 + ‖fu‖2‖r4‖24
. c5d

−1/2ε3 + c3c4ε
3 + c24ε

4 = (c̄3c4 + c5d
−1/2)ε3,

(B.24)

using Corollary D.1 and Lemma C.1.
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Finally, we apply Proposition 4.1 with the functions fu = uTx, ‖u‖ = 1, and
m = 2. We have

‖R‖ = ‖mρ − L‖ = sup
‖u‖=1

∫
uTxdγ(x)− uTL

= sup
‖u‖=1

∣∣∣∣∫ fudρ−
∫
fudγ − uTL

∣∣∣∣
≤ sup
‖u‖=1

∣∣∣∣∫ fudρ−
∫
fudγ − L2(fu)

∣∣∣∣+ sup
‖u‖=1

R2,u

. K1,3((c̄3ε)
3 + (c̄3ε)

4) + (c̄3c4 + c5d
−1/2)ε3

. K1,3(c̄3c4 + c̄33 + c5d
−1/2)ε3 + c̄43ε

4

(B.25)

C Auxiliary Results

Lemma C.1. Let r4 and r5 be the fourth and fifth order remainders in the
Taylor expansion of W about zero, i.e.

rk(x) = W (x)−
k−1∑
j=0

1

j!
〈∇jW (0), x⊗j〉, k = 4, 5. (C.1)

Then
‖r4‖p .p,q c4ε2, ∀p ≥ 1. (C.2)

If Assumption A5 also holds, then

‖r5‖p .p,q c5d−1/2ε3, ∀p ≥ 1. (C.3)

Proof. Fix x ∈ Rd and let u = x/‖x‖. Then rk(x) is the kth order Taylor
remainder of the function Wu : t 7→ W (tu) about t = 0, evaluated at t = ‖x‖.
Therefore, using (4.7), we have

|r4(x)| ≤ sup
s∈[0,‖x‖]

|W (4)
u (s)| ‖x‖

4

4!
≤ c4

24n
‖x‖4(1 + ‖x/

√
n‖q). (C.4)

Hence

E [|r4(Z)|p] .p
(c4
n

)p(
E [‖Z‖4p] +

E [‖Z‖(4+q)p]

(
√
n)qp

)
.p,q

(c4
n

)p
d2p = (c4ε

2)p,

(C.5)

using that d ≤ n. Taking the pth root gives the desired bound. When Assump-
tion A5 holds we can use (4.9) to show, similarly to (C.4), that

|r5(x)| ≤ sup
s∈[0,‖x‖]

|W (5)
u (s)| ‖x‖

5

5!
≤ c5

120n
‖x‖5(1 + ‖x/

√
d‖q). (C.6)
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From here, an analogous calculation gives

‖r5‖p .p,q
c5d

2.5

n
√
n

= c5d
−1/2ε3,

as desired.

Lemma C.2. We have
|r(x)| . c̄3ε‖x‖4+q (C.7)

for all x ∈ Uc = {x : ‖x‖ ≥ 4
√
d}.

Proof. Using the Taylor expansion (4.11) of r, Lemma 4.2, Lemma C.1, and (C.4)
from the proof of Lemma C.1, we get

|r(x)| ≤ ‖∇
3W (0)

3!
‖x‖3 + |r4(x)|+ |γ(r4)|

.
c3√
n
‖x‖3 +

c4
n
‖x‖4(1 + ‖x/

√
n‖q) + c4ε

2

≤ c3ε‖x‖3 + c4ε
2‖x‖4(1 + ‖x/

√
n‖q) + c4ε

2.

(C.8)

Now note that 1 ≤ ‖x‖3 ≤ ‖x‖4 ≤ ‖x‖4+q on Uc, and ‖x/
√
n‖ ≤ ‖x‖. Then

the last line above is bounded by |r(x)| . (c3ε + c4ε
2)‖x‖4+q = c̄3ε‖x‖4+q, as

desired.

D Hermite-Related Proofs

D.1 Very Brief Hermite Primer

Let γ = (γ1, . . . , γd) ∈ Nd≥0. We let |γ| = γ1 + · · · + γd, and γ! = γ1! . . . γd!.
Then

Hγ(x1, . . . , xd) =

d∏
i=1

Hγi(xi),

where Hk(x) is the order k univariate Hermite polynomial. We have H0(x) =
1, H1(x) = x,H2(x) = x2 − 1, H3(x) = x3 − 3x. We have

E [Hγ(Z)Hγ′(Z)] = δγ,γ′γ!.

Given i, j, k ∈ [d], let γ(ijk) = (γ1, . . . , γd) be given by

γ` = δi` + δj` + δk`, ` = 1, . . . , d.

In other words γ` is the number of times index ` ∈ [d] repeats within the string
ijk. For example

γ(111) = (3, 0, . . . , 0), γ(113) = (2, 0, 1, 0, . . . , 0).

We define H3(x) as the d× d× d tensor, with entries

Hijk
3 (x1, . . . , xd) = Hγ(ijk)(x1, . . . , xd).

One can show that H3(x) = x⊗3 − 3Sym(x⊗ Id).
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D.2 Proof of main Lp bound

First, we prove

Lemma D.1. If T is a symmetric d× d× d tensor, then

E [〈T,H3(Z)〉2] = 3!‖T‖2F .

Proof. Note that given a γ with |γ| = 3, there are 3!/γ! tuples (i, j, k) ∈ [d]3 for
which γ(ijk) = γ. We let Tγ denote Tijk for any ijk for which γ(ijk) = γ. This
is well-defined since T is symmetric. Now, since both T and H3 are symmetric
tensors, we can write the inner product between T and H3 by grouping together
equal terms. In other words, for all 3!/γ! tuples i, j, k such that γ(ijk) = γ, we

have TijkH
ijk
3 = TγHγ . Therefore,

〈T,H3(Z)〉 =
∑
|γ|=3

3!

γ!
TγHγ(Z).

Using this formula, we get

E [〈T,H3(Z)〉2] =

d∑
|γ|=3,|γ′|=3

3!

γ!

3!

γ′!
TγTγ′E [Hγ(Z)Hγ′(Z)]

=

d∑
|γ|=3

3!

γ!

3!

γ!
T 2
γ γ! = 3!

d∑
|γ|=3

3!

γ!
T 2
γ

= 3!

d∑
i,j,k=1

T 2
ijk = 3!‖T‖2F .

(D.1)

Lemma D.2. If T is a symmetric d× d× d tensor, then

‖〈T,H3〉‖2k ≤
√

6(2k − 1)3/2d‖T‖.

Proof. Let L be the generator for the d-dimensional Ornstein-Uhlenbeck pro-
cess. Then it is known that (LHγ)(x) = −|γ|Hγ(x), i.e. the Hγ are eigenfunc-
tions of L with corresponding eigenvalues−|γ|. Hence, Pt〈T,H3〉 = e−3t〈T,H3〉,
where Pt = etL. Now, by hypercontractivity (see e.g. Chapter 5.2.2 of [Bakry et al., 2014]),
we have

e−3t‖〈T,H3〉‖q(t) = ‖Pt〈T,H3〉‖q(t) ≤ ‖〈T,H3〉‖2,

where q(t) = 1 + e2t. Setting 2k = q(t) we get e3t = (2k − 1)3/2, so that

‖〈T,H3〉‖2k ≤ (2k − 1)3/2‖〈T,H3〉‖2 ≤ (2k − 1)3/2
√

6‖T‖F , (D.2)

where the last inequality is by Lemma D.1. Finally, we use that ‖T‖F ≤ d‖T‖.
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Corollary D.1. If T is a symmetric d× d× d tensor, then

‖〈T, x⊗3〉‖2k ≤ 6(2k − 1)3/2d‖T‖.

In particular, if p3(x) = 1
3! 〈∇

3W (0), x⊗3〉 then

‖p3‖2k ≤ (2k − 1)3/2c3ε.

Proof. The second statement follows from the first by recalling ‖∇3W (0)‖ .
c3/
√
n by Lemma 4.2. To prove the first statement, we use that since H3(x) =

x⊗3 − 3Sym(x⊗ Id) and T is symmetric, we have

〈T,H3(x)〉 = 〈T, x⊗3 − 3x⊗ Id〉 = 〈T, x⊗3〉 − 3〈T, x⊗ Id〉 = 〈T, x⊗3〉 − 3yTx,

where y = 〈T, Id〉. Note that ‖y‖ ≤ d‖T‖. Therefore, 〈T, x⊗3〉 = 〈T,H3(x)〉 +
3yTx, so that

‖〈T, x⊗3〉‖2k ≤ ‖〈T,H3〉‖2k + 3‖yTx‖2k
≤
√

6(2k − 1)3/2d‖T‖+ 3((2k − 1)!!)1/2kd‖T‖
≤ 6(2k − 1)3/2d‖T‖,

(D.3)

since (2k − 1)!!
1/2k ≤ (2k − 1)3/2 and

√
6 + 3 ≤ 6.

E Negligible Tail

Lemma E.1. We have∫
Uc
‖x‖p|r(x)|k+1e−r(x)dγ(x)

.p,k e
A(q)c̄3ε(1 +Bp,k+1) (c̄3ε)

k+1 = Kp,k+1(c̄3ε)
k+1.

(E.1)

We start with two supplementary lemmas. For their proof, note that by
comparing the Taylor expansion (4.10) of W and the second line of the Taylor
expansion (4.11) of r, we have that

r(x) = W (x)−W (0)− ‖x‖
2

2
− γ(r4),

and hence

e−r(x)γ(x) = (2π)−d/2 exp
(
−r(x)− ‖x‖2/2

)
= (2π)−d/2 exp (γ(r4) +W (0)−W (x))

≤ (2π)−d/2eA(q)c4ε
2

exp (W (0)−W (x)) ,

(E.2)

where the last line uses Lemma C.1 to bound |γ(r)| ≤ ‖r4‖2 ≤ A(q)c4ε
2.
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Lemma E.2. We have

I :=

∫
4
√
d≤‖x‖≤r

√
n

‖x‖pe−r(x)γ(x)dx .p e
A(q)c4ε

2

(3/4)d/2. (E.3)

Proof. When ‖x‖ ≤ r
√
n, we have by Lemma 4.3 that W (x)−W (0) ≥ ‖x‖2/4.

Therefore using (E.2) we have that

e−r(x)γ(x) ≤ (2π)−d/2eA(q)c4ε
2

e−‖x‖
2/4, ‖x‖ ≤ r

√
n.

Substituting into the integral I, we get

I ≤ eA(q)c4ε
2

(2π)−d/2
∫

4
√
d≤‖x‖

‖x‖pe−‖x‖
2/4dx, (E.4)

and

(2π)−d/2
∫

4
√
d≤‖x‖

‖x‖pe−‖x‖
2/4dx

=
√

2
d+p

E [‖Z‖p{‖Z‖ ≥ 2
√

2
√
d}]

.p
√

2
d√
d
p
e−

d
4 (2
√

2−1)2

.p d
p/2
(√

2e−
1
4 (2
√

2−1)2
)d

≤ dp/2(3/4)d .p (3/4)d/2.

(E.5)

Here we used that dp/2 (3/4)
d

=
[
dp/2 (3/4)

d/2
]

(3/4)
d/2

and the expression in

square brackets is bounded above by a constant C(p) for all d ∈ N. Substitut-
ing (E.5) into (E.4) finishes the proof.

Lemma E.3. We have∫
‖x‖≥r

√
n

‖x‖pe−r(x)γ(x)dx . eA(q)c4ε
2

exp
(

(p+ d) log(r
√
ne

1
α )− nc0

)
.

(E.6)

Proof. Recall from point 3 of Lemma 4.2 that

W (x)−W (0) ≥ nc0‖x/(r
√
n)‖α, ∀‖x‖ ≥ r

√
n

and hence using (E.2) we have

e−r(x)γ(x) ≤ eA(q)c4ε
2

(2π)d/2
exp

(
−nc0‖x/(r

√
n)‖α

)
=
eA(q)c4ε

2

(2π)d/2
exp (−‖Mx/N‖α) ,

(E.7)
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where M = (nc0)1/α and N = r
√
n. Therefore,∫

‖x‖≥r
√
n

‖x‖pe−r(x)γ(x)dx

≤ eA(q)c4ε
2

(2π)d/2

∫
‖x‖≥r

√
n

‖x‖p exp (−‖Mx/N‖α) dx

=
Sd−1e

A(q)c4ε
2

(2π)d/2

∫ ∞
N

up+d−1e−(MN u)αdu,

(E.8)

where Sd−1 is the surface area of the unit d-sphere. Now we apply Lemma E.4
with a = N = r

√
n, b = M/N (where M = (nc0)1/α) and α = α to get that∫

‖x‖≥r
√
n

‖x‖pe−r(x)γ(x)dx .α e
A(q)c4ε

2

(r
√
n)p+de

p+d
α −nc0

= eA(q)c4ε
2

exp
(

(p+ d) log(r
√
ne

1
α )− nc0

)
,

(E.9)

as desired.

Combining the above two lemmas, we immediately get

Corollary E.1. We have∫
Uc
‖x‖pe−r(x)γ(x)dx .p e

A(q)c4ε
2
(

1 + exp
(

(p+ d) log(r
√
ne

1
α )− nc0

))
.

We can now prove Lemma E.1.

Proof of Lemma E.1. Fix ‖x‖ ≥ 4
√
d ≥ 1. Using Lemma C.2, we have |r(x)| .q

c̄3ε‖x‖4+q on the set Uc, and therefore

‖x‖p|r(x)|k+1 .q (c̄3ε)
k+1‖x‖p+(k+1)(4+q)

on this set. Therefore using Corollary E.1 we have∫
Uc
‖x‖p|r|k+1e−rdγ . (c̄3ε)

k+1

∫
Uc
‖x‖p+(k+1)(4+q)e−rdγ

. eA(q)c4ε
2
(

1 + exp
(

(p+ (k + 1)(4 + q) + d) log(r
√
ne

1
α )− nc0

))
(c̄3ε)

k+1

≤ eA(q)c̄3ε(1 +Bp,k+1)(c̄3ε)
k+1 = Kp,k+1(c̄3ε)

k+1,

(E.10)

as desired.

43



E.1 Auxiliary results for proof of Lemma E.1

Lemma E.4. Assume (ab)α > (p+ d)/α. Then

I :=
Sd−1

(2π)d/2

∫ ∞
a

up+d−1e−(bu)αdu .
ap+d

αΓ(d/2)2d/2
e
p+d
α −(ab)α . (E.11)

Proof. First, let u = s/b so that up+d−1du = b−p−dsp+d−1ds. Hence

I =
Sd−1b

−p−d

(2π)d/2

∫ ∞
ab

sp+d−1e−s
α

ds. (E.12)

Next, let s = t1/α, so that

sp+d−1ds = t(p+d−1)/α 1

α
t

1
α−1ds =

1

α
t
p+d
α −1dt.

Hence

I =
Sd−1b

−p−d

α(2π)d/2

∫ ∞
(ab)α

t
p+d
α −1e−tdt

=
Sd−1b

−p−dΓ((p+ d)/α)

α(2π)d/2
P(X ≥ (ab)α),

(E.13)

where X ∼ Γ((p + d)/α, 1). Now, we show in Lemma E.5 that if λ > c and
X ∼ Γ(c, 1), then Γ(c)P(X ≥ λ) ≤ ec−λλc. Applying this result with λ = (ab)α

and c = (p+ d)/α, we get

I .
Sd−1b

−p−d(ab)p+d

α(2π)d/2
e
p+d
α −(ab)α =

Sd−1a
p+d

α(2π)d/2
e
p+d
α −(ab)α . (E.14)

To conclude, we substitute the formula Sd−1 = 2πd/2/Γ(d/2).

Lemma E.5. Let X ∼ Γ(c, 1). Then for λ > c, we have

Γ(c)P(X ≥ λ) ≤ ec−λλc.

Proof. The mgf of Γ(c, 1) is E [eXt] = (1− t)−c, defined for t < 1. Hence for all
t ∈ (0, 1) we have

P(X ≥ λ) ≤ e−λt(1− t)−c = f(t). (E.15)

Now,

f ′(t) = −λf(t) +
c

1− t
f(t) = f(t)

(
c

1− t
− λ

)
,

and we find that t = 1 − c
λ is the minimizer of f . Substituting this value of t

into (E.15) gives
P(X ≥ λ) ≤ ec−λ(λ/c)c.

Multiplying both sides by Γ(c) and using that Γ(c) ≤ cc gives the desired bound.
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F Proofs from Section 3: Logistic Regression

Proof of Lemma 3.1. First note that we can write v as

v(b) =

(
1

n

n∑
i=1

YiXi

)T
b− 1

n

n∑
i=1

log(1 + eb
TXi).

Also, let v∞(b) = E [v(b) | {Xi}ni=1], which is given by

v∞(b) =

(
1

n

n∑
i=1

s(βTXi)Xi

)T
b− 1

n

n∑
i=1

log(1 + eb
TXi), (F.1)

recalling that E [Yi | Xi] = s(βTXi). Note also that ∇v∞(β) = 0, and that

∇v(β) = ∇v(β)−∇v∞(β) =
1

n

n∑
i=1

(Yi − s(βTXi))Xi. (F.2)

.
We will show that if d/n is small enough then

v(b) > v(β), ∀‖b− β‖ = 1 (F.3)

with high probability. It then follows that v(b′) > v(β) for all ‖b′ − β‖ ≥ 1.
Indeed, fix such a b′ and let b be the point on the segment connecting β to b′

that is distance 1 away from β. Then by convexity of v, we have

v(b′)− v(β) ≥ v(b)− v(β)

‖b′ − β‖
> 0.

This implies that the minimizer β̂ of v lies inside the unit ball around β, i.e.
‖β̂−β‖ < 1. To prove (F.3), Taylor expand v around β, and evaluate at a point
b such that ‖b− β‖ = 1:

v(b)− v(β) =∇v(β)T (b− β) +
1

2
(b− β)T∇2v(ξ)(b− β)

≥

(
1

n

n∑
i=1

(Yi − s(βTXi))Xi

)T
(b− β)

+
‖b− β‖2

2
inf

‖x−β‖≤1
λmin(∇2v(x))

≥−

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − s(βTXi))Xi

∥∥∥∥∥+
1

2
inf
‖x‖≤2

λmin(∇2v(x)).

(F.4)

In the first line of (F.4), ξ is a point on the interval between b and β. In the
second line, we used equation (F.2) for ∇v(β). In the third line, we used that
‖b− β‖ = 1, and that ‖β‖ = 1, so {‖x− β‖ ≤ 1} ⊂ {‖x‖ ≤ 2}.

45



Now, we apply Lemma 7 of Chapter 3 of the PhD thesis [Sur, 2019]. (This
result also appears in Lemma 4 of the paper [Sur et al., 2019], but the form in
which it appears in the thesis is closer to our setting.) The lemma states that
if d/n < C < 1 for some absolute constant C, then there exist C1, C2, C3 > 0
such that the event

E1 =

{
inf
‖b‖≤r

λmin(∇2v(b)) ≥ C1s
′ (C2r) ∀r ≥ 0.

}
has probability at least 1−4e−C3n. (In fact, the lemma proves an even stronger
statement than this). Furthermore, if d/n < 1/(4 log 3) then by Lemma F.1

E2 =

{∥∥∥∥∥ 1

n

n∑
i=1

(Yi − s(βTXi))Xi

∥∥∥∥∥ ≤ 4
√
d/n

}
(F.5)

has probability at least 1− e−d/2 − e−n/4. Therefore,

P(E1 ∩ E2) ≥ 1− e−d/2 − 5e−(C3∧0.25)n = 1− e−d/2 − 5e−A1n

(where A1 = C3 ∧ 0.25) and on E1 ∩ E2 we have that

v(b)− v(β) ≥ −

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − s(βTXi))Xi

∥∥∥∥∥+
1

2
inf
‖x‖≤2

λmin(∇2v(x))

≥ −4
√
d/n+

C1

2
s′(2C2)

(F.6)

If d/n < min
(
C, (4 log 3)−1,

(
C1

8 s
′(2C2)

)2)
=: A0 then this lower bound on

v(b) − v(β) is positive. (Recall that d/n < C, d/n < 1/(4 log 3) is necessary to

apply the aforementioned lemmas). We conclude that ‖β̂ − β‖ ≤ 1 on E1 ∩E2.
But then we also have on E1 ∩ E2 that

λmin(∇2v(β̂)) ≥ inf
‖b‖≤2

λmin(∇2v(b)) ≥ C1s
′ (2C2) =: A2.

We conclude that

E1 ∩ E2 ⊆ {‖β̂ − β‖ ≤ 1, λmin(∇2v(β̂)) ≥ A2},

and hence the righthand event has probability at least 1 − e−d/2 − 5e−A1n as
well. This concludes the proof.

Proof of Lemma 3.2. We have

∇kv(b) =
1

n

n∑
i=1

s(k−1)(bTxi)x
⊗k
i . (F.7)

This is a symmetric tensor, so Theorem 2.1 of [Zhang et al., 2012] implies that
‖∇kv(b)‖ = sup‖u‖=1〈∇kv(b), u⊗k〉, i.e. it suffices to consider the action of
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∇kv(b) on the product of k copies of the same unit vector, rather than k arbitrary
unit norm vectors. Now, using that |s(k−1)| is bounded uniformly over R, we
have

‖∇kv(b)‖ ≤ ‖s(k−1)‖∞ sup
‖u‖=1

1

n

n∑
i=1

|XT
i u|k. (F.8)

We now apply Proposition 4.4 of [Adamczak et al., 2010], which implies that
there are absolute constants B′0, B

′
1 such that the events

Fk =

{
sup
‖u‖=1

1

n

n∑
i=1

|XT
i u|k ≤ B′0

(
1 +

dk/2

n

)}
(F.9)

satisfy P(Fk) ≥ 1− 2 exp(−B′1
√
nd/ log(2n/d)) for all k = 2, 3, 4, 5. This result

and (F.8) imply that (3.4) is satisfied with B0 = maxk=2,3,4,5 ‖s(k−1)‖∞B′0 and
B1 = B′1.

For the next proof, we return to the notation of the proof of Lemma 3.1. We
note that that proof implies

E1 ∩ E2 ⊆ E1 ∩ {‖β̂ − β‖ ≤ 1}

= {‖β̂ − β‖ ≤ 1, inf
‖b‖≤r

λmin(∇2v(b)) ≥ A(r) ∀r ≥ 0} =: E3,
(F.10)

where A(r) = C1s
′ (C2r). In particular, λmin(Hv) = λmin(∇2v(β̂)) ≥ A(2) on

E3. (The lower bound A(2) was denoted A2 in the above proof.) Note also that
P(E3) ≥ P(E1 ∩ E2) ≥ 1− e−d/2 − 5e−A1n.

Proof of Lemma 3.3. In this proof we write H for Hv, for brevity. Define

f(y) = v(β̂ +H−1/2y)− v(β̂),

and let k = inf‖y‖=r f(y). First, we will show that f(y) ≥ κ‖y/r‖ for all ‖y‖ ≥ r.
Since v is convex, so is f . Now, fix y such that ‖y‖ ≥ r, and let u = ry/‖y‖ be
the point on the line segment connecting 0 to u which has norm r. By convexity
of f , it follows that

f(y) = f(y)− f(0) ≥ ‖y‖
r

(f(u)− f(0)) = ‖y/r‖f(u)

≥ ‖y/r‖
[

inf
‖u‖=r

f(u)

]
= κ‖y/r‖,

(F.11)

as desired. Now, fix x such that ‖x‖H ≥ r. Let x = H−1/2y and note that
‖y‖ = ‖x‖H ≥ r. Using the definition of f , we have

v(β̂ + x)− v(β̂) = v(β̂ +H−1/2y)− v(β̂) = f(y) ≥ κ‖y/r‖ = κ‖x/r‖H .

To finish the proof, we show that on a subset of the event E3 defined in (F.10),
there exists an absolute constant C0 such that κ ≥ C0. Recall from the remarks
following the definition of E3 that λmin(H) ≥ A(2) on E3.
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Fix y such that ‖y‖ = r and Taylor expand f around zero. Then for some
t ∈ [0, 1], we have on the event E3 that

f(y) = f(y)− f(0) =
1

2
yTH−1/2∇2v

(
β̂ + tH−1/2y

)
H−1/2y

≥ 1

2
inf

‖y‖=r,t∈[0,1]
λmin

(
∇2v(β̂ + tH−1/2y)

)
‖H−1/2y‖2

≥ 1

2
inf

‖u‖≤‖β̂‖+‖H−1/2‖r
λmin

(
∇2v(u)

) r2

‖H‖

≥ 1

2
inf

‖u‖≤2+r/
√
A(2)

λmin

(
∇2v(u)

) r2

‖H‖

≥ 1

2
A(2 + r/

√
A(2))

r2

‖H‖
.

(F.12)

Therefore,

κ = inf
‖y‖=r

f(y) ≥ 1

2
A(2 + r/

√
A(2))

r2

‖H‖
(F.13)

on E3. To conclude the proof, we recall from Lemma 3.2 that

E4 = { sup
b∈Rd
‖∇2v(b)‖ ≤ B0(1 + d/n) ≤ 2B0}

has probability at least 1− e−B1

√
nd/ log(2n/d). Thus

P(E3 ∩ E4) ≥ 1− 2 exp(−B1

√
nd/ log(2n/d))− e−d/2 − 5e−A1n

≥ 1− 7 exp(−C1

√
nd/ log(2n/d))− e−d/2

(F.14)

for some C1. On E3 ∩ E4 we have

κ ≥ 1

2
A(2 + r/

√
A(2))

r2

‖H‖
≥ 1

2
A(2 + r/

√
A(2))

r2

2B0
=: C0.

This concludes the proof.

For the next two proofs, recall that ak,p = E [s(k)(Z1)Zp1 ] for Z1 ∼ N (0, 1).
Also, we use V to denote V̄∞ for brevity.

Proof of Lemma 3.4. Using (3.8), we have

HV = ∇2V (β) = E [s′(Z1)ZZT ]

= ndiag(a1,2, a1,0 . . . , a1,0),
(F.15)

and
∇3V (β) = nE [s′′(Z1)Z⊗3].
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Now, for a fixed vector b ∈ Rd, we compute

〈∇3V (β), b⊗3〉 = nE [s′′(Z1)(bTZ)3]

= nE [s′′(Z1)(b1Z1)3] + 3nE [s′′(Z1)Z1]E [(bT2:dZ2:d)
2]

= n
(
a2,3b

3
1 + 3a2,1b1‖b2:d‖2

)
.

(F.16)

Hence
|〈∇3V (β), b⊗3〉| ≥ n

(
3|a2,1||b1|‖b2:d‖2 − |a2,3||b1|3

)
. (F.17)

Now substitute

b = H
−1/2
V Z = n−1/2

(
a
−1/2
1,2 Z1, a

−1/2
1,0 Z2, . . . , a

−1/2
1,0 Zd

)
into (F.17) and take expectations on both sides:

L = E |〈∇3V (β), (H
−1/2
V Z)⊗3〉|

≥ 3
(d− 1)√

n

|a2,1|
a

1/2
1,2 a1,0

E [|Z1||Z2|2]− |a2,3|
a

3/2
1,2

E [|Z1|3]√
n

≥ 2

a
1/2
1,2

√
n

(
|a2,1|
a1,0

(d− 1)− 2|a2,3|
a1,2

)
,

(F.18)

as desired.

Proof of Lemma 3.5. Using the formulas for HV and ∇3V (β) from the proof of
Lemma 3.4, we have

L = −1

2
H
−1/2
V 〈∇3V (β), H−1

V 〉

= −n
2
E
[
s′′(Z1)ZTH−1

V ZH
−1/2
V Z

]
= −1

2
E

s′′(Z1)

a−1
1,2Z

2
1 +

d∑
j=2

a−1
1,0Z

2
j

H
−1/2
V Z


= − 1

2a1,2
E
[
s′′(Z1)Z2

1H
−1/2
V Z

]
− 1

2a1,0

d∑
j=2

E
[
s′′(Z1)Z2

jH
−1/2
V∞

Z
]

= − a2,3

2a
3/2
1,2

√
n
e1 −

(d− 1)a2,1

2a1,0a
1/2
1,2

√
n
e1

= − 1

2
√
na

1/2
1,2

(
a2,3

a1,2
+ (d− 1)

a2,1

a1,0

)
e1.

(F.19)

Taking the norm of this vector gives the result.
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Lemma F.1. Let Xi
i.i.d.∼ N (0, Id), i = 1, . . . , n, and Yi | Xi ∼ Bernoulli(s(Xi1)),

where s(t) = (1 + e−t)−1 is the sigmoid and Xi1 is the first coordinate of Xi. If
d/n < 1/(4 log 3) then

P

(∥∥∥∥∥ 1

n

n∑
i=1

(Yi − s(Xi1))Xi

∥∥∥∥∥ ≥ 4
√
d/n

)
≤ e−n/4 + e−d/2. (F.20)

Proof. Let A = 1
n

∑n
i=1(Yi − s(Xi1))Xi, and let N be a 1/2-net of the sphere

Sd−1. Then
‖A‖ ≤ 2 sup

u∈N
uTA,

and hence

P(‖A‖ ≥ t) ≤ P( sup
u∈N

uTA ≥ t/2) ≤ 3d sup
‖u‖=1

P(uTA ≥ t/2),

where we have used a union bound and the fact that |N | ≤ 3d. Now, we have

P(uTA ≥ t/2) = E
[
P
(
uTA ≥ t/2 | {Xi}ni=1

)]
= E

[
P

(
n∑
i=1

(Yi − E [Yi | Xi])u
TXi ≥ nt/2 | {Xi}ni=1

)]

≤ E
[

exp

(
− 2n2(t/2)2∑n

i=1(uTXi)2

)]
= E

[
exp

(
− n2t2

2‖Zn‖2

)]
,

(F.21)

where Zn ∼ N (0, In). We have used Hoeffding’s inequality in the third line,
and the fact that (uTXi)

n
i=1 is a standard normal on Rn. Now, we have

E
[

exp

(
− n2t2

2‖Zn‖2

)]
≤ P(‖Zn‖ ≥ 2

√
n) + exp

(
− n2t2

2(2
√
n)2

)
≤ e−n/2 + e−nt

2/8.

(F.22)

Taking t = 4
√
d/n and combining all of the preceding bounds, we conclude that

P(‖A‖ ≥ 4
√
d/n) ≤ ed log 3−n/2 + ed(log 3−2)

≤ e−n/4 + e−d/2,
(F.23)

using that d/n < 1/4 log 3 to get the last line.

G Matrix-weighted operator norm of a tensor

In Theorem 2.1 of [Zhang et al., 2012] it is shown that

sup
‖x1‖=···=‖xm‖=1

〈T, x1 ⊗ · · · ⊗ xm〉 = sup
‖x‖=1

〈T, x⊗m〉, ∀T ∈ Symm(Rn), (G.1)
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where Symm(Rn) is the set of order m, dimension n symmetric tensors. We now
show the same is true for the H-weighted tensor operator norm, i.e. we claim
that

‖T‖H := sup
‖x1‖H=···=‖xm‖H=1

〈T, x1 ⊗ · · · ⊗ xm〉 = sup
‖x‖H=1

〈T, x⊗m〉. (G.2)

Here, ‖x‖H =
√
xTHx for a symmetric matrix H. To prove (G.2), we start by

noting the following identity.

Lemma G.1. Given a symmetric order m, dimension d tensor T and a d× d
matrix A, define the tensor S(T,A) by

S(T,A)i1...im =

d∑
j1,...,jm=1

Tj1...jmAi1j1 . . . Aimjm . (G.3)

Then
〈T, (Ay1)⊗ · · · ⊗ (Aym)〉 = 〈S(T,A), y1 ⊗ · · · ⊗ ym〉 (G.4)

for all y1, . . . , ym ∈ Rd.

Proof. We have

〈T, (Ay1)⊗ · · · ⊗ (Aym)〉 =

d∑
j1,...,jm=1

Tj1...jm(Ay1)j1 . . . (Aym)jm

=

d∑
i1,...,im=1

d∑
j1,...,jm=1

Tj1...jmAj1i1(y1)i1 . . . Ajmim(ym)im

=

d∑
i1,...,im=1

(y1)i1 . . . (ym)im

d∑
j1,...,jm=1

Tj1...jmAj1i1 . . . Ajmim

=

d∑
i1,...,im=1

(y1)i1 . . . (ym)imSi1...im

= 〈S(T,A), y1 ⊗ · · · ⊗ ym〉
(G.5)

We now prove (G.2). First let S(T,H−1/2) be defined as in Lemma G.1, and
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note that this is a symmetric tensor, by the symmetry of T . Therefore,

‖T‖H = sup
‖x1‖H=···=‖xm‖H=1

〈T, x1 ⊗ · · · ⊗ xm〉

= sup
‖y1‖=···=‖ym‖=1

〈T, (H−1/2y1)⊗ · · · ⊗ (H−1/2ym)〉

= sup
‖y1‖=···=‖ym‖=1

〈S(T,H−1/2), y1 ⊗ · · · ⊗ ym〉

= sup
‖y‖=1

〈S(T,H−1/2), y⊗m〉

= sup
‖y‖=1

〈T, (H−1/2y)⊗m〉 = sup
‖x‖H=1

〈T, x⊗m〉,

(G.6)

as desired. The third line used Lemma G.1, the fourth line uses (G.1) (since
S(T,H−1/2) is symmetric), and the fifth line again uses Lemma G.1.
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